|
|
非晶态U60Fe27.5Al12.5 合金的晶化动力学行为 |
韩录会1, 柯海波2( ), 张培1, 桑革1, 黄火根1( ) |
1.中国工程物理研究院材料研究所 江油 621907 2.松山湖材料实验室 东莞 523808 |
|
Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy |
HAN Luhui1, KE Haibo2( ), ZHANG Pei1, SANG Ge1, HUANG Huogen1( ) |
1.Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China 2.Songshan Lake Materials Laboratory, Dongguan 523808, China |
引用本文:
韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
Luhui HAN,
Haibo KE,
Pei ZHANG,
Ge SANG,
Huogen HUANG.
Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. Acta Metall Sin, 2022, 58(10): 1316-1324.
1 |
Ortega L H, Blamer B, Stern K M, et al. Thermal conductivity of uranium metal and uranium-zirconium alloys fabricated via powder metallurgy [J]. J. Nucl. Mater., 2020, 531: 151982
doi: 10.1016/j.jnucmat.2019.151982
|
2 |
Li H B, Ding Q, Gu Y J, et al. The initial oxidation behavior of uranium and uranium-titanium alloys in standing storage [J]. Corros. Sci., 2020, 176: 108879
doi: 10.1016/j.corsci.2020.108879
|
3 |
Zubelewicz A, Addessio F L, Cady C M. A constitutive model for a uranium-niobium alloy [J]. J. Appl. Phys., 2006, 100: 013523
|
4 |
Dash S, Ghoshal K, Kutty T R G. Thermodynamic investigations of uranium-rich binary and ternary alloys [J]. J. Therm. Anal. Calorim., 2013, 112: 179
doi: 10.1007/s10973-012-2801-9
|
5 |
Maslennikov A, Bessonov A, Peretroukhine V, et al. Uranium and U-Zr and U-Ru alloy corrosion rates in the transpassive state [J]. J. Alloys Compd., 2007, 444-445: 345
doi: 10.1016/j.jallcom.2007.06.078
|
6 |
Banos A, Harker N J, Scott T B. A review of uranium corrosion by hydrogen and the formation of uranium hydride [J]. Corros. Sci., 2018, 136: 129
doi: 10.1016/j.corsci.2018.03.002
|
7 |
Long Z, Liu K Z, Bai B, et al. Corrosion resistance of modified layer on uranium formed by plasma immersion ion implantation [J]. J. Alloys Compd., 2010, 491: 252
doi: 10.1016/j.jallcom.2009.09.164
|
8 |
Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta. Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
|
8 |
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
|
9 |
Huang H G, Zhang P G, Zhang P, et al. Comparison of glass forming ability between U-Co and U-Fe base systems [J]. Acta. Metall. Sin., 2020, 56: 849
doi: 10.11900/0412.1961.2019.00349
|
9 |
黄火根, 张鹏国, 张 培 等. U-Co与U-Fe基础体系非晶形成能力的比较 [J]. 金属学报, 2020, 56: 849
doi: 10.11900/0412.1961.2019.00349
|
10 |
Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
|
11 |
Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta. Metall. Sin., 2015, 51: 623
|
11 |
黄火根, 王英敏, 陈 亮 等. U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
|
12 |
Zhang P, Pu Z, Zhang P G, et al. U-Fe-Al metallic glasses with superior glass forming ability and corrosion resistance [J]. J. Mater. Res. Technol., 2020, 9: 6209
doi: 10.1016/j.jmrt.2020.03.039
|
13 |
Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
|
13 |
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
|
14 |
Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
|
15 |
Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull. Chem. Soc. Japan, 1965, 38(11): 1881
doi: 10.1246/bcsj.38.1881
|
16 |
Böhmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers [J]. J. Chem. Phys., 1999, 99: 4201
doi: 10.1063/1.466117
|
17 |
Wang T, Yang Y Q, Li J B, et al. Thermodynamics and structural relaxation in Ce-based bulk metallic glass-forming liquids [J]. J. Alloys Compd., 2011, 509: 4569
doi: 10.1016/j.jallcom.2011.01.106
|
18 |
Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
|
19 |
Liu L, Wu Z F, Zhang J. Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy [J]. J. Alloys Compd., 2002, 339: 90
doi: 10.1016/S0925-8388(01)01977-6
|
20 |
Qiao J C, Pelletier J M. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC) [J]. J. Non-Cryst. Solids, 2011, 357: 2590
doi: 10.1016/j.jnoncrysol.2010.12.071
|
21 |
Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J]. Thermochim. Acta, 1995, 267: 61
doi: 10.1016/0040-6031(95)02466-2
|
22 |
Lu W, Yan B, Huang W H. Complex primary crystallization kinetics of amorphous Finemet alloy [J]. J. Non-Cryst. Solids, 2005, 351: 3320
doi: 10.1016/j.jnoncrysol.2005.08.018
|
23 |
Zhuang Y X, Wang W H, Zhang Y, et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10 - x Fe x Be22.5 bulk metallic glasses [J]. Appl. Phys. Lett., 1999, 75: 2392
doi: 10.1063/1.125024
|
24 |
Venkataraman S, Rozhkova E, Eckert J, et al. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: The effect of particulate reinforcement [J]. Intermetallics, 2005, 13: 833
doi: 10.1016/j.intermet.2005.01.010
|
25 |
Yuan Z Z, Chen X D, Wang B X, et al. Kinetics study on non-isothermal crystallization of the metallic Co43Fe20Ta5.5B31.5 glass [J]. J. Alloys Compd., 2006, 407: 163
doi: 10.1016/j.jallcom.2005.06.022
|
26 |
Kozmidis-Petrović A F, Lukić S R, Štrbac G R. Calculation of non-isothermal crystallization parameters for the Cu15(As2Se3)85 metal-chalcogenide glass [J]. J. Non-Cryst. Solids, 2010, 356: 2151
doi: 10.1016/j.jnoncrysol.2010.08.026
|
27 |
Zhuang Y X, Duan T F, Shi H Y. Calorimetric study of non-isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass [J]. J. Alloys Compd., 2011, 509: 9019
doi: 10.1016/j.jallcom.2011.06.112
|
28 |
Hu L, Ye F. Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass [J]. J. Alloys Compd., 2013, 557: 160
doi: 10.1016/j.jallcom.2012.12.158
|
29 |
Wu J L, Pan Y, Huang J D, et al. Non-isothermal crystallization kinetics and glass-forming ability of Cu-Zr-Ti-In bulk metallic glasses [J]. Thermochim. Acta, 2013, 552: 15
doi: 10.1016/j.tca.2012.11.012
|
30 |
Cui J, Li J S, Wang J, et al. Crystallization kinetics of Cu38Zr46Ag8Al8 bulk metallic glass in different heating conditions [J]. J. Non-Cryst. Solids, 2014, 404: 7
doi: 10.1016/j.jnoncrysol.2014.07.029
|
31 |
Gong P, Yao K F, Ding H Y. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass [J]. Mater. Lett., 2015, 156: 146
doi: 10.1016/j.matlet.2015.05.018
|
32 |
Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|