Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1316-1324    DOI: 10.11900/0412.1961.2021.00077
  研究论文 本期目录 | 过刊浏览 |
非晶态U60Fe27.5Al12.5 合金的晶化动力学行为
韩录会1, 柯海波2(), 张培1, 桑革1, 黄火根1()
1.中国工程物理研究院材料研究所 江油 621907
2.松山湖材料实验室 东莞 523808
Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy
HAN Luhui1, KE Haibo2(), ZHANG Pei1, SANG Ge1, HUANG Huogen1()
1.Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
2.Songshan Lake Materials Laboratory, Dongguan 523808, China
引用本文:

韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
Luhui HAN, Haibo KE, Pei ZHANG, Ge SANG, Huogen HUANG. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. Acta Metall Sin, 2022, 58(10): 1316-1324.

全文: PDF(1667 KB)   HTML
摘要: 

针对典型的U60Fe27.5Al12.5非晶合金,利用差示扫描量热仪进行了非等温晶化与等温晶化过程的动力学研究,并采用不同的理论方法进行了数据分析。发现该合金的玻璃化转变激活能略高于270 kJ/mol,熔体脆度接近22,证实了其属于强金属玻璃体系材料。基于第一放热晶化峰,由非等温晶化方法得到其晶化激活能位于205~275 kJ/mol范围,而由等温晶化方法得到的结果位于280~390 kJ/mol区间,前者明显低于后者,与一般的非晶合金表现一致,其原因是前一种方法的测试过程中温度不断升高,更易于激发晶化反应。前一种方法获得的动力学因子大都位于3~4之间,略高于后一种方法得到的动力学因子主体区间2.5~3,这既证明该非晶的晶化以形核为主,也说明升温过程更易于促使形核发生。

关键词 铀合金非晶合金晶化机制热分析    
Abstract

Due to their high strength and excellent anticorrosive properties, U-based amorphous alloys are quite promising for applications in nuclear-related fields. However, they face the challenge of crystallization due to high temperatures during some applications. Currently, focus on the crystallization mechanism of such materials is limited; thus, further investigation is required. Herein, using differential scanning calorimetry, both nonisothermal and isothermal crystallization kinetics of typical amorphous U60Fe27.5Al12.5 alloy were investigated. This alloy was further analyzed using different theoretical methods. The alloy exhibited the glass transition activation energy of slightly more than 270 kJ/mol and the melt fragility value of about 22, indicating that it is a strong metallic glass material. Based on the first exothermal crystallization peak, this glassy alloy is believed to possess the crystallization activation energy of 205-275 kJ/mol within nonisothermal method and 280-390 kJ/mol within the other method. The former value is much lower than the latter, which is consistent with the results of the conventional amorphous alloys. This general trend is mainly because crystallization can be activated more easily by a continuous increase in temperature. The kinetic factor of the alloy was in the ranges of 3-4 and 2.5-3 under the nonisothermal and isothermal conditions, respectively, demonstrating that the devitrification of the noncrystalline U-Fe-Al alloy greatly depends on the nucleation process, which is prone to occur during a rise in temperature.

Key wordsuranium alloy    amorphous alloy    crystallization mechanism    thermal analysis
收稿日期: 2021-02-25     
ZTFLH:  TG139  
基金资助:国家自然科学基金联合基金项目(U2030208);国家自然科学基金项目(51731002);基础加强计划项目(JCJQ-20190415);表面物理与化学重点实验室预研基金项目(6142A02200205)
作者简介: 韩录会,男,1982年生,博士生
图1  不同升温速率下U60Fe27.5Al12.5非晶合金的DSC曲线,不同特征温度的Kissinger图和Ozawa图,及不同升温速率下玻璃转变温度Tg、晶化温度Tx1和Tx2外延获得的Kauzmann温度
θ / (K·min-1)Tg / KTx1 / KTx2 / K
10630677734
20637687742
40645698754
80653710768
160664722781
表1  U60Fe27.5Al12.5非晶合金的热力学温度
EgEx1Ex2m
kJ·min-1kJ·min-1kJ·min-1
KiOzKiOzKiOzKiOz
274.5271.3237.4236.8260.6259.822.522.2
表2  U60Fe27.5Al12.5非晶合金的激活能与脆度参数
图2  不同升温速率下U60Fe27.5Al12.5非晶合金的DSC晶化曲线与晶化体积分数(x)随温度的变化曲线
图3  U60Fe27.5Al12.5非晶合金的-lnθ~1000 / T关系图及其晶化激活能Ec(x)随晶化体积分数的演化图
图4  U60Fe27.5Al12.5非晶合金的ln[-ln(1 - x)]与1000 / T的关系,及局域动力学因子n(x)随x的演化
图5  U60Fe27.5Al12.5非晶合金在不同温度退火后的DSC晶化曲线及晶化体积分数随温度的变化曲线
图6  U60Fe27.5Al12.5非晶合金在不同温度退火下,晶化时间与退火温度的变化关系及晶化激活能与晶化体积分数的关系
图7  U60Fe27.5Al12.5非晶合金的ln[-ln(1 - x)] vs ln(t - τ)的关系及局域动力学因子随1 - x的演化
Metallic glassTg / KTx / K

Eg

kJ·min-1

Ex or Ep / (kJ·min-1)nRef.
Zr41Ti14Cu12.5Ni10Be22.5

626

(10 K·min-1)

692

(10 K·min-1)

~557 (Ki)~192 (Ki)-[23]
Zr55Cu30Al10Ni5

~681

(20 K·min-1)

~764

(20 K·min-1)

894 (Ki)

230 (Ki)

245 (JMA, Iso)

2.6-3.1

(JMA, Iso)

[19]
Cu47Ti33Zr11Ni8Si1

691

(20 K·min-1)

752

(20 K·min-1)

-

~339 (Ki)

~354 (JMA, Iso)

2.8-3.5

(JMA, Iso)

[24]
Co43Fe20Ta5.5B31.5

~940

(25 K·min-1)

~980

(25 K·min-1)

-

437~595 (Ki)

432~582 (Oz)

-[25]
Cu46Zr45Al7Y2-

~741

(10 K·min-1)

-

340~361 (Ki)

484 (JMA, Iso)

2.4-2.7

(JMA, Iso)

[20]
Cu15(As2Se3)85

~463

(20 K·min-1)

~557

(20 K·min-1)

~282 (Ki)~172 (Ki)

~3.8

(JMA, Non-iso)

[26]
Zr60Cu20Al10Ni10

~670

(20 K·min-1)

~740

(20 K·min-1)

-

202~327 (Ki)

215~339 (Oz)

1.5-15.7

(JMA, Non-iso)

[27]
Ca65Mg15Zn20

~375

(20 K·min-1)

~408

(20 K·min-1)

~148 (Ki)

116~124 (Ki)

147~178 (JMA, Iso)

2.0-2.7

(JMA, Iso)

[28]
Cu54Zr37Ti8In1

700

(25 K·min-1)

729

(25 K·min-1)

~321 (Ki)331~392 (Ki)

2.0-4.5

(JMA, Non-iso)

[29]
Zr46Cu38Ag8Al8-

~784

(20 K·min-1)

-

~310 (Ki)

~451 (JMA, Iso)

4.1-4.8

(JMA, Iso)

[30]

Ti16.7Zr16.7Hf16.7Cu16.7

Ni16.7Be16.7

~700

(20 K·min-1)

~740

(20 K·min-1)

~332 (Ki)

215~246 (Ki)

~260 (JMA, Iso)

1.8-2.1

(JMA, Iso)

[31]
U64Co28.5Al7.5

616

(20 K·min-1)

638

(20 K·min-1)

338 (Ki)200~250 (Ki)

1.5-11.0

(JMA, Non-iso)

[32]
表3  部分非晶合金的特征温度与晶化动力学参数[19,20,23~32]
1 Ortega L H, Blamer B, Stern K M, et al. Thermal conductivity of uranium metal and uranium-zirconium alloys fabricated via powder metallurgy [J]. J. Nucl. Mater., 2020, 531: 151982
doi: 10.1016/j.jnucmat.2019.151982
2 Li H B, Ding Q, Gu Y J, et al. The initial oxidation behavior of uranium and uranium-titanium alloys in standing storage [J]. Corros. Sci., 2020, 176: 108879
doi: 10.1016/j.corsci.2020.108879
3 Zubelewicz A, Addessio F L, Cady C M. A constitutive model for a uranium-niobium alloy [J]. J. Appl. Phys., 2006, 100: 013523
4 Dash S, Ghoshal K, Kutty T R G. Thermodynamic investigations of uranium-rich binary and ternary alloys [J]. J. Therm. Anal. Calorim., 2013, 112: 179
doi: 10.1007/s10973-012-2801-9
5 Maslennikov A, Bessonov A, Peretroukhine V, et al. Uranium and U-Zr and U-Ru alloy corrosion rates in the transpassive state [J]. J. Alloys Compd., 2007, 444-445: 345
doi: 10.1016/j.jallcom.2007.06.078
6 Banos A, Harker N J, Scott T B. A review of uranium corrosion by hydrogen and the formation of uranium hydride [J]. Corros. Sci., 2018, 136: 129
doi: 10.1016/j.corsci.2018.03.002
7 Long Z, Liu K Z, Bai B, et al. Corrosion resistance of modified layer on uranium formed by plasma immersion ion implantation [J]. J. Alloys Compd., 2010, 491: 252
doi: 10.1016/j.jallcom.2009.09.164
8 Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta. Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
8 汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
9 Huang H G, Zhang P G, Zhang P, et al. Comparison of glass forming ability between U-Co and U-Fe base systems [J]. Acta. Metall. Sin., 2020, 56: 849
doi: 10.11900/0412.1961.2019.00349
9 黄火根, 张鹏国, 张 培 等. U-Co与U-Fe基础体系非晶形成能力的比较 [J]. 金属学报, 2020, 56: 849
doi: 10.11900/0412.1961.2019.00349
10 Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
11 Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta. Metall. Sin., 2015, 51: 623
11 黄火根, 王英敏, 陈 亮 等. U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
12 Zhang P, Pu Z, Zhang P G, et al. U-Fe-Al metallic glasses with superior glass forming ability and corrosion resistance [J]. J. Mater. Res. Technol., 2020, 9: 6209
doi: 10.1016/j.jmrt.2020.03.039
13 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
13 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
14 Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
15 Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull. Chem. Soc. Japan, 1965, 38(11): 1881
doi: 10.1246/bcsj.38.1881
16 Böhmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers [J]. J. Chem. Phys., 1999, 99: 4201
doi: 10.1063/1.466117
17 Wang T, Yang Y Q, Li J B, et al. Thermodynamics and structural relaxation in Ce-based bulk metallic glass-forming liquids [J]. J. Alloys Compd., 2011, 509: 4569
doi: 10.1016/j.jallcom.2011.01.106
18 Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
19 Liu L, Wu Z F, Zhang J. Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy [J]. J. Alloys Compd., 2002, 339: 90
doi: 10.1016/S0925-8388(01)01977-6
20 Qiao J C, Pelletier J M. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC) [J]. J. Non-Cryst. Solids, 2011, 357: 2590
doi: 10.1016/j.jnoncrysol.2010.12.071
21 Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J]. Thermochim. Acta, 1995, 267: 61
doi: 10.1016/0040-6031(95)02466-2
22 Lu W, Yan B, Huang W H. Complex primary crystallization kinetics of amorphous Finemet alloy [J]. J. Non-Cryst. Solids, 2005, 351: 3320
doi: 10.1016/j.jnoncrysol.2005.08.018
23 Zhuang Y X, Wang W H, Zhang Y, et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10 - x Fe x Be22.5 bulk metallic glasses [J]. Appl. Phys. Lett., 1999, 75: 2392
doi: 10.1063/1.125024
24 Venkataraman S, Rozhkova E, Eckert J, et al. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: The effect of particulate reinforcement [J]. Intermetallics, 2005, 13: 833
doi: 10.1016/j.intermet.2005.01.010
25 Yuan Z Z, Chen X D, Wang B X, et al. Kinetics study on non-isothermal crystallization of the metallic Co43Fe20Ta5.5B31.5 glass [J]. J. Alloys Compd., 2006, 407: 163
doi: 10.1016/j.jallcom.2005.06.022
26 Kozmidis-Petrović A F, Lukić S R, Štrbac G R. Calculation of non-isothermal crystallization parameters for the Cu15(As2Se3)85 metal-chalcogenide glass [J]. J. Non-Cryst. Solids, 2010, 356: 2151
doi: 10.1016/j.jnoncrysol.2010.08.026
27 Zhuang Y X, Duan T F, Shi H Y. Calorimetric study of non-isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass [J]. J. Alloys Compd., 2011, 509: 9019
doi: 10.1016/j.jallcom.2011.06.112
28 Hu L, Ye F. Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass [J]. J. Alloys Compd., 2013, 557: 160
doi: 10.1016/j.jallcom.2012.12.158
29 Wu J L, Pan Y, Huang J D, et al. Non-isothermal crystallization kinetics and glass-forming ability of Cu-Zr-Ti-In bulk metallic glasses [J]. Thermochim. Acta, 2013, 552: 15
doi: 10.1016/j.tca.2012.11.012
30 Cui J, Li J S, Wang J, et al. Crystallization kinetics of Cu38Zr46Ag8Al8 bulk metallic glass in different heating conditions [J]. J. Non-Cryst. Solids, 2014, 404: 7
doi: 10.1016/j.jnoncrysol.2014.07.029
31 Gong P, Yao K F, Ding H Y. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass [J]. Mater. Lett., 2015, 156: 146
doi: 10.1016/j.matlet.2015.05.018
32 Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252
[1] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[2] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[3] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[4] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[5] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[6] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[7] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[8] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[9] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[10] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[11] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[12] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[13] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[14] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[15] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.