Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1129-1140    DOI: 10.11900/0412.1961.2021.00079
  研究论文 本期目录 | 过刊浏览 |
喷射成形过共晶AlSiCuMg合金的固溶行为
冯迪1(), 朱田1, 臧千昊1, 李胤樹2,3, 范曦4, 张豪4
1.江苏科技大学 材料科学与工程学院 镇江 212003
2.Metallic Materials Division, Korea Institute of Materials Science, Changwon 51508, Korea
3.Department of Materials Science and Engineering, Inha University, Incheon 22212, Korea
4.江苏豪然喷射成形合金有限公司 镇江 212009
Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy
FENG Di1(), ZHU Tian1, ZANG Qianhao1, LEE Yunsoo2,3, FAN Xi4, ZHANG Hao4
1.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.Metallic Materials Division, Korea Institute of Materials Science, Changwon 51508, Korea
3.Department of Materials Science and Engineering, Inha University, Incheon 22212, Korea
4.Jiangsu Haoran Spray Forming Alloy Co., Ltd., Zhenjiang 212009, China
引用本文:

冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
Di FENG, Tian ZHU, Qianhao ZANG, Yunsoo LEE, Xi FAN, Hao ZHANG. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. Acta Metall Sin, 2022, 58(9): 1129-1140.

全文: PDF(4665 KB)   HTML
摘要: 

利用OM、XRD、SEM + EBSD、TEM、硬度测试以及相图计算研究了喷射成形Al25Si4Cu1Mg (质量分数,%)合金在固溶过程中的第二相和晶粒演变行为。结果表明:喷射成形过共晶AlSi合金的热挤压组织包含等轴状α-Al、微米级先共晶Si、非层片状共晶Si、共晶AlCuSiMg、共晶Al2Cu相以及低体积分数的富Fe相。α-Al中还包含脱溶析出的微纳米和纳米级Al2Cu相。Si相和α-Al的晶粒尺寸随固溶温度的升高而连续粗化。在475~495℃温度范围固溶时,脱溶相以及部分共晶Al2Cu相随固溶温度的升高而回溶,残余Al2Cu相向富Fe相聚集并粗化,AlCuSiMg相的体积分数和尺寸有所增加。515℃固溶时,第二相回溶程度继续提高,AlCuSiMg相的体积分数开始下降,但未见明显过烧现象。固溶温度超过515℃后,非平衡共晶相的熔化随温度的升高而加剧。过烧组织以晶界处的网状共晶和晶界宽化为主要特征。喷射成形Al25Si4Cu1Mg合金的硬度取决于溶质原子固溶度、残余第二相体积分数、α-Al晶粒尺寸、Si相尺寸以及非平衡共晶相熔化5个相互制约的因素。

关键词 喷射成形过共晶合金AlSiCuMg合金固溶初熔    
Abstract

Al-Si multicomponent alloys are commonly used in automotive and aerospace fields owing to their excellent castability, good wear resistance, and low coefficient of thermal expansion. After adding Cu and Mg followed by appropriate heating, Al2Cu, AlCuSiMg, or Mg2Si phases precipitate in an α-Al matrix. Hypereutectic AlSiCuMg alloys have been used in wear-resistant products, such as engine cylinders, pistons, and air-conditioning rotors, owing to the hardening effect of Si particles and the solid solution strengthening and precipitation strengthening effects of Cu and Mg. The evolution behaviors of secondary phases and the grains of the spray-formed Al25Si4Cu1Mg (mass fraction, %) alloy were examined via OM, XRD, SEM + EBSD, TEM, hardness tests, and phase diagram calculations. The results showed that the hot extrusion microstructure of spray-formed hypereutectic AlSi alloys comprises equiaxed α-Al, proeutectic Si, eutectic Si, eutectic AlCuSiMg, a eutectic Al2Cu phase, and a low volume fraction Fe-bearing phase at the micron level but without a lamellar morphology. α-Al contained both micro-nano and nano-sized Al2Cu phases precipitates. Over the temperature range of 475-495oC, the precipitated Al2Cu phase and some of the eutectic Al2Cu phase redissolved, and the residual Al2Cu phase concentrated to a Fe-bearing phase and coarsened. The volume fraction and size of the AlCuSiMg phase increased. However, when solution-treated at less than 515oC, the volume fraction of the AlCuSiMg phase began to decrease, and no overburning structure was observed. When the solution temperature exceeded 515oC, the incipient melting of the nonequilibrium eutectic phase increased with increasing solution temperature. The main characteristics of the overburning structure were the network eutectic and grain boundary broadening. The hardness of the spray-formed Al25Si4Cu1Mg alloy was dependent on five factors: the solid solubility of solute atoms, the volume fraction of the residual second phase, the grain size of α-Al, the scale of the Si phase, and the incipient melting of the nonequilibrium eutectic phase.

Key wordsspray forming    hypereutectic alloy    AlSiCuMg alloy    solution    incipient melting
收稿日期: 2021-02-25     
ZTFLH:  TG166.3  
基金资助:国家自然科学基金青年基金项目(51801082);江苏省大学生创新创业计划项目(202010289019Z)
作者简介: 冯 迪,男,1984年生,副教授,博士
图1  喷射成形Al25Si4Cu1Mg合金热挤压态的DSC曲线
图2  Al25Si4Cu1Mg合金的XRD谱
图3  喷射成形Al25Si4Cu1Mg合金微观组织的SEM像
图4  不同固溶温度下喷射成形Al25Si4Cu1Mg合金微观组织的OM像
图5  不同固溶温度下喷射成形Al25Si4Cu1Mg合金微观组织的SEM像
图6  不同固溶工艺下的硬度对比
图7  不同固溶温度下合金微观组织的局部取向差(KAM)及二次电子像
图8  基于FactSage软件绘制的Al25Si4Cu1Mg合金的相图(垂直截面)
1 Vandersluis E, Ravindran C. Effects of solution heat treatment time on the as-quenched microstructure, hardness and electrical conductivity of B319 aluminum alloy [J]. J. Alloys Compd., 2020, 838: 155577
doi: 10.1016/j.jallcom.2020.155577
2 Sadeghi I, Wells M A, Esmaeili S. Effect of particle shape and size distribution on the dissolution behavior of Al2Cu particles during homogenization in aluminum casting alloy Al-Si-Cu-Mg [J]. J. Mater. Process. Technol., 2018, 251: 232
doi: 10.1016/j.jmatprotec.2017.08.042
3 Vieira A C, Pinto A M, Rocha L A, et al. Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al-Si-Cu-Mg alloys in 0.05 M NaCl [J]. Electrochim. Acta, 2011, 56: 3821
doi: 10.1016/j.electacta.2011.02.044
4 Wang Y J, Liao H C, Wu Y N, et al. Effect of Si content on microstructure and mechanical properties of Al-Si-Mg alloys [J]. Mater. Des., 2014, 53: 634
doi: 10.1016/j.matdes.2013.07.067
5 Wu Y N, Liao H C, Zhou K X. Effect of minor addition of vanadium on mechanical properties and microstructures of as-extruded near eutectic Al-Si-Mg alloy [J]. Mater. Sci. Eng., 2014, A602: 41
6 Liao H C, Wu Y N, Ding K. Hardening response and precipitation behavior of Al-7%Si-0.3%Mg alloy in a pre-aging process [J]. Mater. Sci. Eng., 2013, A560: 811
7 Giovanni M T D, Mørtsell E A, Saito T, et al. Influence of Cu addition on the heat treatment response of A356 foundry alloy [J]. Mater. Today Commun., 2019, 19: 342
doi: 10.1016/j.mtcomm.2019.02.013
8 Hwang J Y, Banerjee R, Doty H W, et al. The effect of Mg on the structure and properties of Type 319 aluminum casting alloys [J]. Acta Mater., 2009, 57: 1308
doi: 10.1016/j.actamat.2008.11.021
9 Han Y, Samuel A M, Doty H W, et al. Optimizing the tensile properties of Al-Si-Cu-Mg 319-type alloys: Role of solution heat treatment [J]. Mater. Des., 2014, 58: 426
doi: 10.1016/j.matdes.2014.01.060
10 Zhang J Y, Zuo L J, Feng J, et al. Effect of thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni-Mg alloy produced by different casting technologies [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1717
doi: 10.1016/S1003-6326(20)65333-X
11 Lasa L, Rodriguez-Ibabe J M. Evolution of the main intermetallic phases in Al-Si-Cu-Mg casting alloys during solution treatment [J]. J. Mater. Sci., 2004, 39: 1343
doi: 10.1023/B:JMSC.0000013895.72084.c9
12 Mohamed A M A, Samuel F H, Al kahtani S. Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al-Si-Cu-Mg cast alloys [J]. Mater. Sci. Eng., 2012, A543: 22
13 Lombardi A, Ravindran C, MacKay R. Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method [J]. Mater. Sci. Eng., 2015, A633: 125
14 Toda H, Nishimura T, Uesugi K, et al. Influence of high-temperature solution treatments on mechanical properties of an Al-Si-Cu aluminum alloy [J]. Acta Mater., 2010, 58: 2014
doi: 10.1016/j.actamat.2009.11.044
15 Luna I A, Molinar H M, Román M J C, et al. Improvement of the tensile properties of an Al-Si-Cu-Mg aluminum industrial alloy by using multi stage solution heat treatments [J]. Mater. Sci. Eng., 2013, A561: 1
16 Lin G Y, Tan X, Feng D, et al. Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al-13Si-7.5Cu-1Mg alloy [J]. Int. J. Min., Met., Mater., 2019, 26: 1013
17 Zhang J Y, Zuo L J, Feng J, et al. Effect of thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni-Mg alloy produced by different casting technologies [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1717
doi: 10.1016/S1003-6326(20)65333-X
18 Feng D, Han Z J, Li J C, et al. Evolution behavior of primary phase during pre-heat treatment before deformation for spray formed 7055 aluminum alloy [J]. Rare Met. Mater. Eng., 2020, 49: 4253
18 冯 迪, 韩仲杰, 李吉臣 等. 喷射成形7055铝合金初生相在形变前预热处理中的演变行为 [J]. 稀有金属材料与工程, 2020, 49: 4253
19 Hu Y S, Feng D, Zhou, J D, et al. Constitutive equation and thermal processing map of spray formed AlSi25Cu4Mg wear resistant alloy [J]. Mater. Rep., 2020, 34: 10120
19 胡余生, 冯 迪, 周建党 等. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图 [J]. 材料导报, 2020, 34: 10120
20 Zang Q H, Feng Di, Lee Y S, et al. Microstructure and mechanical properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy strip fabricated by twin roll casting and hot rolling [J]. J. Alloys Compd., 2020, 847: 156481
doi: 10.1016/j.jallcom.2020.156481
21 Zhang J S, Xiong B Q, Cui H. Spray Forming Rapid Solidification Technology: Principles and Applications [M]. Beijing: Science Press, 2008: 1
21 张济山, 熊柏清, 崔 华. 喷射成形快速凝固技术—原理与应用 [M]. 北京: 科学出版社, 2008: 1
22 Samuel A M, Gauthier J, Samuel F H. Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment [J]. Metall. Mater. Trans., 1996, 27A: 1785
23 Han Y M, Samuel A M, Samuel F H, et al. Effect of solution heat treatment type on the dissolution of copper phases in Al-Si-Cu-Mg type alloys [J]. AFS Trans., 2008, 116: 79
24 Han Y M, Samuel A M, Samuel F H, et al. Dissolution of Al2Cu phase in non-modified and Sr modified 319 type alloys [J]. Int. J. Cast Met. Res., 2008, 21: 387
doi: 10.1179/136404608X347662
25 Vandersluis E, Andilab B, Ravindran C, et al. In-situ characterization of the solution heat treatment of B319 aluminum alloy using X-ray diffraction and electron microscopy [J]. Mater. Charact., 2020, 167: 110499
doi: 10.1016/j.matchar.2020.110499
26 Wang F, Gu Y L, Duan X J, et al. The study of spray deposited hyper-eutectic Al-Si alloy [J]. Acta Metall. Sin., 1999, 35: 121
26 王 锋, 顾英利, 段先进 等. 喷射成形过共晶Al-Si合金的研究 [J]. 金属学报, 1999, 35: 121
27 Samuel A M, Doty H W, Valtierra S, et al. Relationship between tensile and impact properties in Al-Si-Cu-Mg cast alloys and their fracture mechanisms [J]. Mater. Des., 2014, 53: 938
doi: 10.1016/j.matdes.2013.07.021
28 Feng D, Wang G Y, Chen H M, et al. Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy [J]. Met. Mater. Int., 2018, 24: 195
doi: 10.1007/s12540-017-7324-2
29 Feng D, Zhang X M, Liu S D, et al. Effect of grain size on hot deformation behavior of a new high strength aluminum alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2104
29 冯 迪, 张新明, 刘胜胆 等. 晶粒尺寸对新型高强铝合金热变形行为的影响 [J]. 稀有金属材料与工程, 2016, 45: 2104
30 Zang Q H, Yu H S, Lee Y S, et al. Hot deformation behavior and microstructure evolution of annealed Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy [J]. J. Alloys Compd., 2018, 763: 25
doi: 10.1016/j.jallcom.2018.05.307
31 Wu Y N, Liao H C, Yang J, et al. Effect of Si content on dynamic recrystallization of Al-Si-Mg alloys during hot extrusion [J]. J. Mater. Sci. Technol., 2014, 30: 1271
doi: 10.1016/j.jmst.2014.07.011
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[3] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[6] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[7] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[9] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[10] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[11] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[12] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[13] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[14] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[15] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.