金属学报, 2023, 59(6): 777-786 DOI: 10.11900/0412.1961.2021.00315

研究论文

低密度Ti2AlNb基合金热轧板微观组织的热稳定性

冯艾寒1, 陈强2, 王剑3, 王皞4, 曲寿江,1, 陈道伦,5

1同济大学 材料科学与工程学院 上海 200092

2西南技术工程研究所 重庆 400039

3宝钛集团有限公司 宝鸡 721014

4上海理工大学 材料与化学学院 增材制造研究院 上海 200093

5Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada

Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate

FENG Aihan1, CHEN Qiang2, WANG Jian3, WANG Hao4, QU Shoujiang,1, CHEN Daolun,5

1School of Materials Science and Engineering, Tongji University, Shanghai 200092, China

2Southwest Technology and Engineering Research Institute, Chongqing 400039, China

3BaoTi Group Co., Ltd., Baoji 721014, China

4Interdisciplinary Center for Additive Manufacturing, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

5Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada

通讯作者: 曲寿江,qushoujiang@tongji.edu.cn,主要从事TiAl、Ti2AlNb基合金精密热成型及钛基合金增材制造的研究陈道伦,dchen@torontomu.ca,主要从事先进材料和关键工程材料的变形、疲劳、断裂、焊接和连接的研究

责任编辑: 肖素红

收稿日期: 2021-07-30   修回日期: 2022-05-09  

基金资助: 国家重点研发计划项目(2018YFB0704100)
国家自然科学基金项目(51871168)
西南技术工程研究所合作基金项目(HDHDW5902020102)

Corresponding authors: QU Shoujiang, associate professor, Tel:(021)39947690, E-mail:qushoujiang@tongji.edu.cnCHEN Daolun, professor, Tel: +416-979-5000 (ext.556487), E-mail:dchen@torontomu.ca

Received: 2021-07-30   Revised: 2022-05-09  

Fund supported: National Key Research and Development Program of China(2018YFB0704100)
National Natural Science Foundation of China(51871168)
Southwest Technology and Engineering Research Institute Cooperation Fund(HDHDW5902020102)

作者简介 About authors

冯艾寒,女,1974年,副教授

摘要

采用OM、SEM、XRD和TEM研究了低密度Ti2AlNb基合金热轧板在600~1100℃保温12 h微观组织的热稳定性。结果表明,Ti2AlNb基合金原始态热轧板主要由α2、B2以及O相组成,颗粒状的α2相分布在B2相基体中。Ti2AlNb基合金热轧板600℃保温12 h,颗粒状的α2相分布在B2相基体中,B2相基体中分布着大量细小的O相板条。随着温度的升高,合金热轧板800~900℃保温12 h的微观组织由α2、B2以及O相三相构成,α2相颗粒逐渐球化,O相板条粗化并固溶于B2相基体中。当温度升高至950℃时,B2相基体中的O相板条消失。合金热轧板在950~1000℃保温12 h形成α2 + B2两相区,α2相颗粒球化并趋向于分布在B2相基体的晶界处。当温度升高至1100℃时,合金基体为B2单相,B2晶界处分布着极少量的残留α2相颗粒。Vickes显微硬度分布结果显示,随着温度的升高,合金板材在600℃时硬度达到峰值(509 HV),这与大量细小的O相板条有关。

关键词: Ti2AlNb基合金; 相变; 轧板; 微观组织; 热稳定性

Abstract

Multielement and multiphase intermetallic alloys based on an ordered orthorhombic (O) phase Ti2AlNb, where the presence of a long-range order superlattice structure effectively impedes the movement of dislocations and high-temperature diffusion, are a class of highly promising lightweight high-temperature structural materials for aerospace applications due to their high specific strength and superior fracture toughness. Thermal stability of microstructures in the hot rolled sheet of a low-density Ti2AlNb-based alloy has been investigated in a temperature range from 600oC to 1100oC for 12 h via OM, SEM, XRD, and TEM/STEM. The results showed that the initial Ti2AlNb-based alloy hot rolled sheet consisted of α2, B2, and O phases. Furthermore, the Ti2AlNb-based alloy hot rolled sheet at 600oC for 12 h consisted of α2, B2, and O phases, where the particle shaped α2 phase was distributed in the B2 matrix, and lath-like O phase lay inbetween the α2 particles. The spheroidization of the α2 phase started to occur along with the coarsening and solutionizing of the lath O phase in the B2 matrix at a temperature between 800oC and 900oC for 12 h, while the hot rolled Ti2AlNb-based alloy plate was still composed of α2, B2, and O phases. When the temperature reached 950oC, the O phase disappeared in the B2 matrix. Only α2 + B2 two phases were present in the hot rolled Ti2AlNb-based alloy at 950-1000oC for 12 h, where the α2 phase was spheroidized and tended to distribute surrounding B2 grain boundaries. When the temperature rose to 1100oC, the alloy contained a B2 single phase with only some residual α2 phase. Moreover, the Vickers microhardness contour vs temperature plot revealed that a peak hardness of as high as 509 HV appeared at 600oC due to the presence of numerous fine O laths.

Keywords: Ti2AlNb-based alloy; phase transformation; rolling sheet; microstructure; thermal stability

PDF (4075KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786 DOI:10.11900/0412.1961.2021.00315

FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. Acta Metallurgica Sinica, 2023, 59(6): 777-786 DOI:10.11900/0412.1961.2021.00315

Ti2AlNb基合金是以有序正交结构O相为基的金属间化合物[1,2],由于长程有序超点阵结构减弱了位错运动和高温扩散,因而该合金具有较低的密度[3]、较高的强度和塑性、优异的超塑性[3],优良的断裂韧性和高温蠕变性能、抗氧化性能[4,5],以及低周疲劳性能[6]等特点,是一种极具潜力的新型航空航天用轻质高温结构材料[7],可望在500~650℃长时间使用,作为镍基高温合金潜在替代材料被寄予极大期待,在航空航天等领域具有广阔的应用前景[8~10]

Ti2AlNb基合金包含B2、α2和O相3种相。α2相为hcp结构有序相,化学计量分子式为Ti3Al,具有D019结构,空间群为P63/mmc[11]。B2/β相为bcc结构。Pathak和Singh[12]采用密度泛函理论(density functional theory,DFT)研究指出,B2相具有较高的各向异性。O相为有序正交结构(orthorhombic),空间群为CmCm,化学计量分子式为Ti2AlNb。

Ti2AlNb基合金成分通常为Ti-(18~30)Al-(12.5~30)Nb (原子分数,%,下同)。Ti2AlNb基合金的力学性能对材料成分、相组成和组织敏感,如何实现材料组织与性能的精确控制成为研究的重点。当温度变化时,Ti2AlNb基合金中将发生2种性质不同的B2→α2、B2→O可逆相变[1],以及α2→O相变[1,3,13]。这使得合金组织(构成相、相分数、形态及尺寸等)对温度、冷却速率和热加工变形条件等因素十分敏感[8]

各构成相对合金综合力学性能具有不可替代的作用。合金蠕变抗力源于α2相和具有较高本征塑性的O相;合金的塑性则源于具有较多滑移系的B2相。迄今为止,O相的热力学稳定成分-温度范围还存在争议,基于动力学原因,至今尚未得到Ti2AlNb单晶,使得O相晶体结构、合金原子占位,以及诸多物理性质尚需深入探索[14,15]。因此,Ti2AlNb基合金微观组织热稳定性对力学性能具有重要的影响[16,17]。然而受限于对O相晶体结构起源和热力学动力学因素认知解析不足,Ti2AlNb基合金成分-组织-性能精确调控难以达成,这制约了其工程应用。

Ti2AlNb基合金铸态组织粗大、室温塑性较低、高温变形抗力大,一般通过等温锻造、包覆精密轧制等热加工过程细化组织[18,19],随后的热处理有助于微观组织调制[3,20]与力学性能精确控制[21]。Ti2AlNb基合金通过热加工可以获得等轴、双态和层片状等典型的显微组织[22,23]。在O + B2相区高温区间对经过热变形的合金进行固溶或时效处理,之后快速冷却,可获得等轴状两相组织,O相含量随热处理温度的升高而降低[24]。在1025℃固溶处理,可保留8%~12% (体积分数)弥散分布的α2相,从而有效阻碍B2相在高温固溶过程中长大,随后在O + B2双相低温区间时效处理获得双态组织[25]

不同微观组织的Ti2AlNb基合金表现出不同的性能特征。双态组织塑性和抗疲劳性能较好,具有中等的抗蠕变性能;等轴状组织的合金抗蠕变性能和室温断裂韧性较差;层片状组织的合金具有优良的断裂韧性和抗蠕变性能,但塑性较差[26,27]。由于晶粒尺寸对合金蠕变及拉伸性能的影响规律相反,合金的微观组织难以同时满足对强度、塑性及蠕变的共同要求。Ti2AlNb基合金板条组织比等轴组织具有更高的蠕变性能,这是由于粗大的O相板条有利于提高合金蠕变性能;细小的针状O + B2双相组织的强度和塑性都较好[28]。研究[29]表明,O相层片对合金的强化作用与其尺寸、含量相关,可通过对片层O相尺寸和含量的控制实现合金强度与塑性的良好匹配。因此,根据Ti2AlNb基合金的相变规律和使役条件进行微观组织优化设计,可以促进Ti2AlNb基合金的实用化进程[3]

本工作在Ti2AlNb基合金成分设计过程中引入了“Nb当量”的概念,即用强β稳定元素(Mo、V和Si)部分替代Nb元素,设计开发了低密度Ti2AlNb基合金,其密度约为5.3 g/cm3。主要研究低密度Ti2AlNb基合金热轧板微观组织的热稳定性:(1) 合金在600~1100℃保温12 h的相转变规律;(2) 合金硬度随组织演变的规律。旨在揭示Ti2AlNb基合金相变与硬度变化规律,从而实现合金微观组织与力学性能精确调控。

1 实验方法

采用名义成分为Ti-22Al-23(Nb, Mo, V, Si)的Ti2AlNb基合金热轧板为研究对象,合金热轧板经过3次真空自耗电弧熔炼、热等静压、多向等温锻造和包覆精密热轧制及中间热处理等技术制备,热轧板厚度为2.5 mm。将Ti2AlNb基合金热轧板线切割为尺寸10 mm × 8 mm × 2.5 mm的矩形试样,样品长度方向与轧向平行。采用不同粒度的金刚石砂纸打磨样品,酒精清洗吹干后用真空石英管密封。热处理温度分别为600、800、850、900、950、1000、1050和1100℃,保温12 h,随后迅速打破石英管水淬,以保留高温时的组织特征。

样品经过金刚石砂纸打磨后,采用6%HClO4 + 34%CH3(CH2)3OH + 60%CH3OH (体积分数)的电解液,在-30℃条件下电解抛光。金相样品电解抛光后采用Kroll试剂腐蚀,利用DM4000M光学金相显微镜(OM)和Quanta 200 FEG场发射扫描电子显微镜(SEM)进行微观组织观察。采用Dmax2500 X射线衍射仪(XRD)进行物相分析。透射电镜(TEM)样品采用电火花线切割机切取厚度为0.5 mm的样品,利用砂纸将试样表面磨至70 μm厚,采用MTP-1A型磁力驱动双喷电解减薄器在液氮冷却条件下(-30℃)双喷减薄,电解液为6%HClO4 + 34%CH3(CH2)3OH + 60%CH3OH (体积分数)。利用Tecnai G2 F30型TEM观察样品的微观组织。Vickers硬度测试采用HVS-1000A型数显显微硬度计,载荷为4.903 N,保压时间为15 s,每个样品测量10次,计算样品的平均值和方差。

2 实验结果

2.1 Ti2AlNb基合金热轧态及热处理态组织形貌

图1a~d分别为Ti2AlNb基合金原始态热轧板的OM、SEM、STEM和TEM像。图1a中白色颗粒呈等轴状或长棒状,均匀分布在基体中,颗粒尺寸从几个微米到几十个微米。图1b为合金热轧板SEM背散射照片,能谱(EDS)结果显示,基体为细小、均匀的灰色B2相,黑色的α2相均匀分布在B2相基体中。从图1c的STEM像可以看出,B2相基体中也有板条状的相。图1e~g分别为图1d晶粒形貌TEM像中点I~III的选区电子衍射(SAED)花样。可见点I为α2相,点II和III为B2相基体。

图1

图1   Ti2AlNb基合金原始态热轧板显微组织和选区电子衍射(SAED)花样

(a) OM image (b) SEM image (c) STEM image (d) TEM image

(e-g) SAED patterns of points I (e), II (f), and III (g) in Fig.1d, respectively

Fig.1   Microstructures and selected area electron diffraction (SAED) patterns of hot rolled Ti2AlNb-based alloy plate


图2为Ti2AlNb基合金热轧板在不同温度保温12 h水淬后的OM像。可见,600℃热处理时,合金中白色相为α2相,基体为B2相。当温度升高至800℃时,可以观察到少量的颗粒状α2相,B2相基体中析出大量细小的板条相。当温度继续升高到900℃时,仍可以观察到少量的颗粒状α2相,而B2相基体中的板条相逐渐消失。当温度升高到950~1000℃时,B2相基体中颗粒状的α2相开始球化且含量逐渐减少,板条相消失。当温度升高至1100℃时,合金基本为B2相单相,晶粒呈六角形,平均晶粒尺寸大于200 μm。

图2

图2   Ti2AlNb基合金热轧板在不同温度保温12 h水淬后的OM像

Fig.2   OM images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 600oC (a), 800oC (b), 900oC (c), 950oC (d), 1000oC (e), and 1100oC (f) for 12 h and then water quenching


图3为不同温度保温12 h水淬后Ti2AlNb基合金的SEM像。可见,600℃保温12 h后,B2相基体中分布着黑色颗粒状的α2相,由于受SEM的分辨率限制,图3a中黑色α2相和B2相基体中是否有O相分布尚需进一步通过TEM观察确认。当温度升高至800℃时,可以观察到黑色颗粒状的α2相,EDS结果显示,白色B2相基体中析出大量灰色板条状O相。当温度继续升高到900℃时,仍可以观察到颗粒状α2相,板条状O相在B2相基体中逐渐消失。当温度升高到950~1000℃,合金B2相基体中分布着颗粒状的α2相,O相板条消失,随温度升高,α2相球化且含量减少。当温度升高至1100℃时,合金主要为B2相单相,只有极少量的残余α2相颗粒分布在B2相基体的三角晶界处,B2相的晶粒尺寸大于200 μm。

图3

图3   Ti2AlNb基合金热轧板在不同温度保温12 h水淬后的SEM像

Fig.3   SEM images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 600oC (a), 800oC (b), 900oC (c), 950oC (d), 1000oC (e), and 1100oC (f) for 12 h and then water quenching


图4为Ti2AlNb基合金热轧板经热处理前后的XRD谱。可见,原始态合金热轧板由α2、B2和O三相构成。在600~900℃保温12 h,合金热轧板由α2、B2和O三相构成。当热处理温度为950~1100℃,合金轧板由α2、B2两相构成。可见,当热处理温度从900℃升高到950℃时,合金由α2、B2和O三相转变为α2、B2两相,此时,O相衍射峰消失。图4c~e中插图为XRD谱局部放大图。

图4

图4   Ti2AlNb基合金热轧板在不同温度保温12 h前后的XRD谱

Fig.4   XRD spectra of hot rolled Ti2AlNb-based alloys plate before (a) and after heat treatment at 600oC (b), 800oC (c), 850oC (d), 900oC (e), 950oC (f), 1000oC (g), 1050oC (h), and 1100oC (i) for 12 h and then water quenching (Insets in Figs.4c-e show the magnified spectra)


图5为Ti2AlNb基合金热轧板600℃保温12 h水淬后的TEM像、STEM像和SAED花样。可见,I位置为α2和O相2套衍射斑点,II位置为B2、α2和O相3套衍射斑点。两相位向关系符合文献报道的位向关系(表1[1,3,8,30,31])。

图5

图5   Ti2AlNb基合金热轧板600℃保温12 h水淬的TEM像、STEM像和SAED花样

Fig.5   TEM (a) and STEM (b) images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 600oC for 12 h and then water quenching, and corresponding SAED patterns of points I (c) and II (d) in Fig.5a


表1   Ti2AlNb基合金中α2、B2及O相之间的位向关系[1,3,8,30,31]

Table 1  Summaries of orientation relationships among α2, B2, and O phases[1,3,8,30,31]

PhaseOrientation relationshipRef.
B2/α2[11¯1]B2//[112¯0]a2, (011)B2//(0001)a2[31]
B2/O[1¯11]B2//[11¯0]O, (110)B2//(001)O[30,31]
α2/O[0001]a2//[001]O, (101¯0)a2//(110)O[1,3,8]

新窗口打开| 下载CSV


图6为Ti2AlNb基合金热轧板850℃保温12 h水淬后的TEM像、STEM像和SAED花样。可见,Ti2AlNb基合金在850℃处于α2 + B2 + O三相区,且三相之间的形貌发生较大变化。α2相颗粒中分布少量O相条纹组织,如图6a和c。B2相基体中O相呈板条状分布(图6b和d)。

图6

图6   Ti2AlNb基合金热轧板850℃保温12 h水淬的TEM像、STEM像和SAED花样

Fig.6   TEM (a) and STEM (b) images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 850oC for 12 h and then water quenching, and corresponding SAED patterns of points I (c), II (d), III (e), and IV (f) in Fig.6b


图7为Ti2AlNb基合金热轧板900℃保温12 h水淬后的TEM像和SAED花样。可见,Ti2AlNb基合金在900℃处于α2 + B2 + O三相区,但与850℃时相比,α2相含量增加,O相减少,B2相含量增加。α2相和B2相晶粒长大,α2相颗粒中分布少量O相条纹组织,见图7a和b

图7

图7   Ti2AlNb基合金热轧板900℃保温12 h的TEM像和SAED花样

Fig.7   TEM image (a) of hot rolled Ti2AlNb-based alloy plate after heat treatment at 900oC for 12 h and then water quenching, and corresponding SAED patterns of points I (b), II (c), and III (d) in Fig.7a


图8为Ti2AlNb基合金热轧板1000℃保温12 h水淬后的TEM像、STEM像和SAED花样。可见,Ti2AlNb基合金在1000℃处于α2 + B2两相区。

图8

图8   Ti2AlNb基合金热轧板1000℃保温12 h水淬的TEM像、STEM像和SAED花样

Fig.8   TEM (a) and STEM (b) images of hot rolled Ti2AlNb-based alloy plate after heat treatment at 1000oC for 12 h and then water quenching, and corresponding SAED patterns of points I (c), II (d), III (e), and IV (f) in Fig.8a


2.2 Ti2AlNb基合金显微硬度

图9显示了Ti2AlNb基合金热轧板Vickers硬度随热处理温度的变化。Ti2AlNb基合金原始态热轧板由α2、B2和O相组成,脆性的α2相颗粒分布在塑性B2相基体中,因而,合金热轧板硬度较低(341 HV)。600℃保温12 h后,α2相颗粒中也有条纹状的O相,B2相基体中析出大量细小的O相板条,硬度达到峰值(509 HV)。随着温度升高,在800℃保温12 h时,合金B2相基体中O相板条粗化并逐渐固溶于基体中,使合金硬度逐渐降低。合金热轧板900℃保温12 h后,硬度降低至342 HV。随着温度继续升高,O相固溶于B2相基体中,且α2相球化并逐渐溶于B2基体中,合金化元素Nb、Mo、V、Si等固溶于B2相基体中,在固溶强化的作用下合金的硬度逐渐提高。

图9

图9   Ti2AlNb基合金热轧板Vickers硬度随热处理温度的变化

Fig.9   Microhardnesses of hot rolled Ti2AlNb-based alloy plate as a function of heat treatment temperature


3 分析与讨论

表2总结了Ti2AlNb基合金微观组织热稳定性的研究结果。合金热轧板在600℃热处理时,α2相和B2相转化为O相。合金热轧板材在800~900℃发生O→α2 + B2 + O转变,且随温度升高,达到相变平衡时O相含量减少。合金热板材在950~1050℃由α2 + B2 + O三相区转变为α2 + B2两相区。当热处理温度高于1050℃时,发生α2 + B2→B2相变。Ti2AlNb基合金合各相之间可能发生的转变有:B2→O + α2,B2 + O→α2,B2 + α2→O,B2→B2 + O,B2→B2 + α2α2α2 + O等[31]

表2   Ti2AlNb基合金热轧板不同温度热处理前后的相组成

Table 2  Summaries of phase constituents of hot rolled Ti2AlNb-based alloy plate before and after heat treatment according to XRD, SEM, and TEM analyses

Heat treatmentPhase constituent
XRDSEMTEM
As-rolledB2 + O + α2B2 + O + α2B2 + α2
600oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
800oC, 12 h, WQB2 + O + α2B2 + O + α2-
850oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
900oC, 12 h, WQB2 + O + α2B2 + O + α2B2 + O + α2
950oC, 12 h, WQB2 + α2B2 + α2-
1000oC, 12 h, WQB2 + α2B2 + α2B2 + α2
1050oC, 12 h, WQB2 + α2B2 + α2-
1100oC, 12 h, WQB2 + α2B2 + α2-

Note: WQ—water quenching

新窗口打开| 下载CSV


Popov等[32]研究表明,47.6Ti-24.3Al-24.8Nb-1.0Zr-1.4V-0.6Mo-0.3Si合金在700~750℃保温1 h后水冷的微观组织为β + O相,800~950℃时为α2 + B2/β + O三相,1000℃时为B2 + α2双相组织,1050℃时为β单相。Kazantseva和Lepikhin[33]研究Ti-22Al-26.6Nb合金相变特征时,在1100℃观察到α2 + B2/β + O三相共存组织。由此可见,不同成分Ti2AlNb基合金相变趋势相似,相变点因合金成分和热处理制度而变化。900~950℃之间O相发生了转变,1050~1100℃之间α2相发生了α2→B2的转变。

4 结论

(1) Ti2AlNb基合金原始态热轧板由O、B2和α2相组成,颗粒状的α2相分布在B2相基体中。

(2) Ti2AlNb基合金热轧板在600℃保温12 h时,颗粒状的α2相分布在B2相基体中,α2相颗粒中有少量条纹状的O相,B2相基体中分布着大量细小的O相板条。随着热处理温度升高,800~900℃保温12 h时,合金组织由α2、B2以及O相相构成,α2相颗粒逐渐球化,O相板条粗化并固溶于B2相基体中。当温度升高至950℃时,B2相基体中O相板条消失。合金热轧板在950~1000℃时形成α2 + B2两相区,α2相颗粒球化并趋向于分布在B2相基体的晶界处。当温度升高至1100℃时,合金热轧板基体为B2单相,B2晶界处分布着极少量的残留α2相颗粒。

(3) Vickers显微硬度分布结果表明,Ti2AlNb基合金热板材在600℃时硬度达到峰值(509 HV),这与大量细小的O相板条有关。

参考文献

Banerjee D, Gogia A K, Nandi T K, et al.

A new ordered orthorhombic phase in a Ti3Al-Nb alloy

[J]. Acta Metall., 1988, 36: 871

DOI      URL     [本文引用: 7]

Banerjee D.

The intermetallic Ti2AlNb

[J]. Prog. Mater. Sci., 1997, 42: 135

DOI      URL     [本文引用: 1]

Qu S J, Feng A H, Shagiev M R, et al.

Superplastic behavior of the fine-grained Ti-21Al-18Nb-1Mo-2V-0.3Si intermetallic alloy

[J]. Lett. Mater., 2018, 8: 567

DOI      URL     [本文引用: 9]

Zhu H P, Qu S J, Qi G Y, et al.

High temperature oxidation behavior of as-rolled Ti2AlNb-based alloy

[J]. Chin. J. Rare Met., 2016, 40: 104

[本文引用: 1]

朱慧萍, 曲寿江, 祁广源 .

Ti2AlNb基合金轧板高温抗氧化性能研究

[J]. 稀有金属, 2016, 40: 104

[本文引用: 1]

Xiang J M, Mi G B, Qu S J, et al.

Thermodynamic and microstructural study of Ti2AlNb oxides at 800oC

[J]. Sci. Rep., 2018, 8: 12761

DOI      PMID      [本文引用: 1]

The high-temperature structural applications of Ti2AlNb-based alloys, such as in jet engines and gas turbines, inevitably require oxidation resistance. The objective of this study is to seek fundamental insight into the oxidation behavior of a Ti2AlNb-based alloy via detailed microstructural characterization of oxide scale and scale/substrate interface after oxidation at 800 degrees C using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and transmission electron microscopy (TEM). The oxide scale exhibits a complex multi-layered structure consisting of (Al, Nb)-rich mixed oxide layer (I)/mixed oxide layer (II)/oxygen-rich layer (III)/substrate from the outside to inside, where the substrate is mainly composed of B2 and O-Ti2AlNb phases. High-resolution TEM examinations along with high-angle annular dark-field (HAADF) imaging reveal: (1) the co-existence of two types (alpha and delta) of Al2O3 oxides in the outer scale, (2) the presence of metastable oxide products of TiO and Nb2O5, (3) an amorphous region near the scale/substrate interface including the formation of AlNb2, and (4) O-Ti2AlNb phase oxidized to form Nb2O5, TiO2 and Al2O3.

Zhang Y L, Feng A H, Qu S J, et al.

Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy

[J]. J. Mater. Sci. Technol., 2020, 44: 140

DOI      URL     [本文引用: 1]

Feng A H, Li B B, Shen J.

Recent advances on Ti2AlNb-based alloys

[J]. J. Mater. Metall., 2011, 10: 30

[本文引用: 1]

冯艾寒, 李渤渤, 沈 军.

Ti2AlNb基合金的研究进展

[J]. 材料与冶金学报, 2011, 10: 30

[本文引用: 1]

Shen J, Feng A H.

Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys

[J]. Acta Metall. Sin., 2013, 49: 1286

DOI      URL     [本文引用: 6]

沈 军, 冯艾寒.

Ti2AlNb基合金微观组织调制及热成形研究进展

[J]. 金属学报, 2013, 49: 1286

[本文引用: 6]

Li Z J, Tian W, Li J W, et al.

Application of Ti2AlNb alloy electron beam welding on aero-engine casing

[J]. Gas Turbine Exp. Res., 2020, 33(3): 52

李祚军, 田 伟, 李晋炜 .

Ti2AlNb合金电子束焊接在航空发动机机匣中的应用

[J]. 燃气涡轮试验与研究, 2020, 33(3): 52

Zhang H Y, Yan N, Liang H Y, et al.

Phase transformation and microstructure control of Ti2AlNb-based alloys: A review

[J]. J. Mater. Sci. Technol., 2021, 80: 203

DOI      URL     [本文引用: 1]

Ravi C, Vajeeston P, Mathijaya S, et al.

Electronic structure, phase stability, and cohesive properties of Ti2 XAl (X = Nb, V, Zr)

[J]. Phys. Rev., 1999, 60B: 15683

[本文引用: 1]

Pathak A, Singh A K.

A first principles study of Ti2AlNb intermetallic

[J]. Solid State Commun., 2015, 204: 9

DOI      URL     [本文引用: 1]

Morris M A, Morris D G.

Strain localization, slip-band formation and twinning associated with deformation of a Ti-24at.%Al-11at.%Nb alloy

[J]. Philos. Mag., 1991, 63A: 1175

[本文引用: 1]

Kazantseva N V, Demakov S L, Popov A A.

Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→Ophase transformation

[J]. Phys. Met. Metallogr., 2007, 103: 378

DOI      URL     [本文引用: 1]

Kazantseva N V, Demakov S L, Popov A A.

Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. IV. Formation of the transformation twins upon the α2→O phase transformation

[J]. Phys. Met. Metallogr., 2007, 103: 388

DOI      URL     [本文引用: 1]

Liang X B, Zhou J J, Zhang J W, et al.

High cycle fatigue at high temperatures of the lamellar microstructure of Ti-22Al-25Nb alloy

[J]. Titanium Ind. Prog., 2019, 36(2): 20

[本文引用: 1]

梁晓波, 周俊吉, 张建伟 .

板条组织Ti-22Al-25Nb合金高温高周疲劳行为

[J]. 钛工业进展, 2019, 36(2): 20

[本文引用: 1]

Luo C, Zhang Y, Wang X Y, et al.

Effect of heat treatment on microstructure and properties of cast Ti-22Al-25Nb alloy

[J]. Aerosp. Manuf. Technol., 2020, (2): 18

[本文引用: 1]

骆 晨, 张 寅, 王新英 .

热处理对铸造Ti2AlNb合金组织和力学性能的影响

[J]. 航天制造技术, 2020, (2): 18

[本文引用: 1]

Li B B.

Plate preparation, microstructure and mechanical properties of low-density Ti2AlNb-based alloys

[D]. Harbin: Harbin Institute of Technology, 2011

[本文引用: 1]

李渤渤.

低密度Ti2AlNb基合金板材制备及组织与力学性能研究

[D] 哈尔滨: 哈尔滨工业大学, 2011

[本文引用: 1]

Chen Z.

Research on microstructure and mechanical properties of Ti2AlNb-based alloy fabricated by multiple isothermal forging

[D]. Harbin: Harbin Institute of Technology, 2013

[本文引用: 1]

陈 卓.

Ti2AlNb基合金多向等温锻造组织与力学性能研究

[D]. 哈尔滨: 哈尔滨工业大学, 2013

[本文引用: 1]

Li S Y.

Phase transformation and superplasticity deformation mechanism in Ti2AlNb-based alloys

[D]. Harbin: Harbin Institute of Technology, 2013

[本文引用: 1]

李少雨.

Ti2AlNb基合金相变及超塑性变形机理研究

[D]. 哈尔滨: 哈尔滨工业大学, 2013

[本文引用: 1]

Zhou Y, Cao J X, Huang X, et al.

Microstructure evolution and comprehensive mechanical properties of β/B2 processed Ti-22Al-23Nb-2(Mo, Zr) alloy

[J]. J. Aeronaut. Mater., 2020, 40(4): 25

[本文引用: 1]

周 毅, 曹京霞, 黄 旭 .

β/B2锻造Ti-22Al-23Nb-2(Mo, Zr)合金的组织演化与综合力学性能

[J]. 航空材料学报, 2020, 40(4): 25

[本文引用: 1]

Li J J, Zeng W D, Xue C.

Effects of hot deformation parameters on lamellar microstructure evolution of Ti2AlNb based alloy

[J]. Chin. J. Nonferrous Met., 2014, 24: 1998

[本文引用: 1]

李君珺, 曾卫东, 薛 晨.

热变形参数对Ti2AlNb基合金片层组织演变的影响

[J]. 中国有色金属学报, 2014, 24: 1998

[本文引用: 1]

Wang S L, Zeng W D, Ma X, et al.

Effect of solution temperature on microstructure of Ti-22Al-25Nb alloy

[J]. Mater. Heat Treat., 2009, 38(8): 106

[本文引用: 1]

王邵丽, 曾卫东, 马 雄 .

固溶温度对Ti-22Al-25Nb合金微观组织的影响

[J]. 材料热处理技术, 2009, 38(8): 106

[本文引用: 1]

Boehlert C J, Majumdar B S, Seetharaman V, et al.

Part I. The microstructural evolution in Ti-Al-Nb O + bcc orthorhombic alloys

[J]. Metall. Mater. Trans., 1999, 30A: 2305

[本文引用: 1]

Boehlert C J.

The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy

[J]. J. Phase Equilib., 1999, 20: 101

DOI      URL     [本文引用: 1]

Boehlert C J, Miracle D B.

Part II. The creep behavior of Ti-Al-Nb O + bcc orthorhombic alloys

[J]. Metall. Mater. Trans., 1999, 30A: 2349

[本文引用: 1]

Boehlert C J.

Microstructure, creep, and tensile behavior of a Ti-12Al-38Nb (at.%) beta+orthorhombic alloy

[J]. Mater. Sci. Eng., 1999, A267: 82

[本文引用: 1]

Boehlert C J.

Part III. The tensile behavior of Ti-Al-Nb O + bcc orthorhombic alloys

[J]. Metall. Mater. Trans., 2001, 32A: 1977

[本文引用: 1]

Lin P, He Z B, Yuan S J, et al.

Instability of the O-phase in Ti-22Al-25Nb alloy during elevated-temperature deformation

[J]. J. Alloys Compd., 2013, 578: 96

DOI      URL     [本文引用: 1]

Bendersky L A, Boettinger W J, Roytburd A.

Coherent precipitates in the b.c.c./orthorhombic two-phase field of the Ti-Al-Nb system

[J]. Acta Metall. Mater., 1991, 39: 1959

DOI      URL     [本文引用: 4]

Muraleedharan K, Gogia A K, Nandy T K, et al.

Transformations in a Ti-24Al-15Nb alloy: Part I. Phase equilibria and microstructure

[J]. Metall. Trans., 1992, 23A: 401

[本文引用: 6]

Popov A A, Illarionov A G, Grib S V, et al.

Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide

[J]. Phys. Met. Metallogr., 2008, 106: 399

DOI      URL     [本文引用: 1]

Kazantseva N V, Lepikhin S V.

Study of the Ti-Al-Nb phase diagram

[J]. Phys. Met. Metall., 2006, 102: 169

DOI      URL     [本文引用: 1]

/