|
|
热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响 |
韩林至1, 牟娟1( ), 周永康2, 朱正旺2, 张海峰2 |
1.东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy |
HAN Linzhi1, MU Juan1( ), ZHOU Yongkang2, ZHU Zhengwang2, ZHANG Haifeng2 |
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
Linzhi HAN,
Juan MU,
Yongkang ZHOU,
Zhengwang ZHU,
Haifeng ZHANG.
Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. Acta Metall Sin, 2022, 58(9): 1159-1168.
1 |
Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf. Coat. Technol., 2004, 188-189: 193
doi: 10.1016/j.surfcoat.2004.08.023
|
2 |
Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
|
3 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
4 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
5 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
6 |
Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy [J]. Acta Mater., 2014, 65: 85
doi: 10.1016/j.actamat.2013.11.049
|
7 |
Chen J, Zhou X Y, Wang W L, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloys Compd., 2018, 760: 15
doi: 10.1016/j.jallcom.2018.05.067
|
8 |
Chen G, Luo T, Shen S C, et al. Research progress in refractory high-entropy alloys [J]. Mater. Rep., 2021, 35: 17064
|
8 |
陈 刚, 罗 涛, 沈书成 等. 难熔高熵合金的研究进展 [J]. 材料导报, 2021, 35: 17064
|
9 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
doi: 10.1557/jmr.2018.153
|
10 |
Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
|
10 |
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
|
11 |
Yang S F, Wen J N, Mo J, et al. Microstructure and strengthening mechanisms in FCC-structured single-phase TiC-CoCrFeCuNiAl0.3 HEACs with deformation twinning [J]. Mater. Sci. Eng., 2021, A814: 141215
|
12 |
Yang S F, Zhang Y, Yan X, et al. Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites [J]. Mater. Chem. Phys., 2018, 210: 240
doi: 10.1016/j.matchemphys.2017.11.037
|
13 |
An Z B, Mao S C, Liu Y N, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79: 109
doi: 10.1016/j.jmst.2020.10.073
|
14 |
Hu Y M, Liu X D, Guo N N, et al. Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys [J]. Rare Met, 2019, 38: 840
doi: 10.1007/s12598-019-01310-6
|
15 |
Hu M l, Song W D, Duan D B, et al. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures [J]. Int. J. Mech. Sci., 2020, 182: 105738
doi: 10.1016/j.ijmecsci.2020.105738
|
16 |
Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J]. Mater. Sci. Eng., 2016, A654: 30
|
17 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
doi: 10.1016/j.jallcom.2011.02.171
|
18 |
Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys Compd., 2015, 649: 1110
doi: 10.1016/j.jallcom.2015.07.209
|
19 |
Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy [J]. Mater. Des., 2019, 162: 256.
doi: 10.1016/j.matdes.2018.11.052
|
20 |
Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
doi: 10.1007/s11837-014-1066-0
|
21 |
Voyiadjis G Z, Abed F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency [J]. Mech. Mater., 2005, 37: 355
doi: 10.1016/j.mechmat.2004.02.003
|
22 |
Chen H H, Zhang X F, Liu C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explos. Shock Waves, 2021, 41: 041402
|
22 |
陈海华, 张先锋, 刘 闯 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41: 041402
|
23 |
Dirras G, Couque H, Lilensten L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Mater. Charact., 2016, 111: 106
doi: 10.1016/j.matchar.2015.11.018
|
24 |
Zhang Z R, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Mater. Des., 2017, 133: 435
doi: 10.1016/j.matdes.2017.08.022
|
25 |
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
|
26 |
Wu Y D, Si J J, Lin D Y, et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys [J]. Mater. Sci. Eng., 2018, A724: 249
|
27 |
Yu Q, Chen Y J, Fang Y. Heterogeneity in chemical distribution and its impact in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 393
|
27 |
余 倩, 陈雨洁, 方 研. 高熵合金中的元素分布规律及其作用 [J]. 金属学报, 2021, 57: 393
|
28 |
Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534.
doi: 10.1002/adem.200700240
|
29 |
Wen C, Mo W W, Tian Y W, et al. Research progress on solid solution strengthening of high entropy alloys [J]. Mater. Rep., 2021, 35: 17081
|
29 |
文 成, 莫湾湾, 田玉琬 等. 高熵合金固溶强化问题的研究进展 [J]. 材料导报, 2021, 35: 17081
|
30 |
Yang Y, He Q F. Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
|
30 |
杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|