Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1377-1385    DOI: 10.11900/0412.1961.2020.00107
  本期目录 | 过刊浏览 |
NaCl溶液腐蚀后304不锈钢的射流空蚀特征
刘海霞(), 陈金豪, 陈杰, 刘光磊
江苏大学材料科学与工程学院 镇江 212013
Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution
LIU Haixia(), CHEN Jinhao, CHEN Jie, LIU Guanglei
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
Haixia LIU, Jinhao CHEN, Jie CHEN, Guanglei LIU. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. Acta Metall Sin, 2020, 56(10): 1377-1385.

全文: PDF(1970 KB)   HTML
摘要: 

对采用3%NaCl溶液腐蚀后的304不锈钢试样,借助符合ASTM G134标准的射流空蚀实验装置进行空蚀实验,测量表征试样的质量损失、表面微观组织、表面三维形貌和显微硬度,分析304不锈钢试样的空蚀特征,探究腐蚀时间和空蚀时间对空蚀效果的影响。结果表明,腐蚀时间为24 h的试样,空蚀120 min后即进入空蚀衰减阶段。在空蚀前期,空蚀坑的尺寸小且深度较浅;空蚀后期,试样表面的塑性变形加重,大尺寸空蚀坑增多,晶界处的微裂纹沿晶界扩展,最终空蚀坑之间相互连接导致试样表面出现晶界剥落现象。试样的表面粗糙度随着空蚀时间延长而增大;未经3%NaCl溶液腐蚀时的表面粗糙度最大。空蚀时间为120 min时,腐蚀时间为120 h的试样,其表面塑性变形较腐蚀时间为24 h的试样加剧,且晶界处出现微裂纹。3%NaCl溶液的腐蚀起到延缓空蚀的作用,但延缓程度随着腐蚀时间的延长而减小。

关键词 空蚀304不锈钢腐蚀质量损失表面形貌显微硬度    
Abstract

The 304 stainless steel specimens were corroded in 3%NaCl solution, and then cavitation erosion experiments were performed on these specimens using an experimental rig that conformed to the ASTM G134 standard. The effects of both the corrosion time and erosion time on cavitation erosion were analyzed. The cavitation erosion characteristics were described via the mass loss, surface microstructure, three-dimensional surface morphology and microhardness. The results show that for the specimen corroded for 24 h, the stage of cavitation erosion attenuation commences at the cavitation erosion time of 120 min. In the early stage of cavitation erosion, erosion pits manifest small size and depth. In the later stage of cavitation erosion, the plastic deformation is intensified and large erosion pits are abundant. Microcracks expand along grain boundaries. Eventually, the interconnection between erosion pits incurs peeling-off of grain boundaries. The surface roughness increases with the cavitation erosion time. Compared to the corroded specimens, the non-corroded specimen demonstrates higher surface roughness after cavitation erosion. As the corrosion time increases from 24 h to 120 h and the cavitation erosion time is remained at 120 min, the plastic deformation is strengthened and microcracks emerge at grain boundaries. The 3%NaCl solution helps to suppress cavitation erosion. Nevertheless, as the corrosion time increases, the suppression effect attenuates.

Key wordscavitation erosion    304 stainless steel    corrosion    mass loss    surface morphology    microhardness
收稿日期: 2020-04-07     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(51775251)
作者简介: 刘海霞,女,1977年生,教授,博士
图1  射流空蚀实验装置示意图
图2  实验空蚀腔
图3  不同靶距条件下的累积质量损失(Δm)
图4  试样腐蚀前后的表面形貌
图5  累积质量损失和质量损失率随空蚀时间的变化
图6  不同射流时间条件下试样表面微观组织的SEM像
图7  不同射流时间条件下的试样表面三维轮廓
图8  表面粗糙度随空蚀时间的变化
图9  腐蚀试样和未腐蚀试样的截面显微硬度随深度的变化对比
图10  腐蚀不同时间后经过120 min空蚀的试样表面显微组织
图11  腐蚀不同时间后进行120 min空蚀的试样三维表面轮廓
[1] Lebon G S B, Tzanakis I, Pericleous K, et al. Experimental and numerical investigation of acoustic pressures in different liquids [J]. Ultrasonics-Sonochem, 2018, 42: 411
doi: 10.1016/j.ultsonch.2017.12.002
[2] Franc J P, Michel J M. Fundamentals of Cavitation [M]. Holland: Kluwer Academic Publishers, 2004: 269
[3] Peng K W, Tian S C, Li G S, et al. Mapping cavitation impact field in a submerged cavitating jet [J]. Wear, 2018, 396-397: 22
doi: 10.1016/j.wear.2017.11.006
[4] Zhou M M, Liu H X, Kang C, et al. Resistance of curved surfaces to the cavitation erosion produced through high-pressure submerged waterjet [J]. Wear, 2019, 440-441: 203091
doi: 10.1016/j.wear.2019.203091
[5] Liu H X, Kang C, Zhang W, et al. Flow structures and cavitation in submerged waterjet at high jet pressure [J]. Exp. Thermal Fluid Sci., 2017, 88: 504
doi: 10.1016/j.expthermflusci.2017.07.003
[6] Lehocka D, Klich J, Foldyna J, et al. Copper alloys disintegration using pulsating water jet [J]. Measurement, 2016, 82: 375
doi: 10.1016/j.measurement.2016.01.014
[7] Kang C, Liu H X, Zhang T, et al. Investigation of submerged waterjet cavitation through surface property and flow information in ambient water [J]. Appl. Surf. Sci., 2017, 425: 915
doi: 10.1016/j.apsusc.2017.07.115
[8] Wu C Q, Ren R M, Liu P T, et al. Cavitation erosion of 304 stainless steel induced by caviting water jet [J]. Chin. J. Mater. Res., 2016, 30: 473
doi: 10.11901/1005.3093.2015.730
[8] (吴从前, 任瑞铭, 刘鹏涛等. 304不锈钢空化水射流表面空蚀损伤研究 [J]. 材料研究学报, 2016, 30: 473)
doi: 10.11901/1005.3093.2015.730
[9] Liu H, Zhao X J, Liu P T, et al. Cavitation damage on surface of pure copper by cavitating water jet erosion [J]. Mater. Mech. Eng., 2017, 41(5): 68
[9] (刘 欢, 赵秀娟, 刘鹏涛等. 空化水射流冲蚀纯铜的表面空蚀损伤 [J]. 机械工程材料, 2017, 41(5): 68)
[10] Azhari A, Schindler C, Hilbert K, et al. Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304 [J]. Surf. Coat. Technol., 2014, 258: 1176
doi: 10.1016/j.surfcoat.2014.07.013
[11] Zheng Z B, Zheng Y G. Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2016, 112: 657
doi: 10.1016/j.corsci.2016.09.005
[12] Zhao Y L, Zhou F, Yao J, et al. Erosion-corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement [J]. Wear, 2015, 328-329: 464
doi: 10.1016/j.wear.2015.03.017
[13] Aribo S, Barker R, Hu X M, et al. Erosion-corrosion behaviour of lean duplex stainless steels in 3.5% NaCl solution [J]. Wear, 2013, 302: 1602
doi: 10.1016/j.wear.2012.12.007
[14] Kovendhan M, Kang H, Jeong S, et al. Study of stainless steel electrodes after electrochemical analysis in sea water condition [J]. Environ. Res., 2019, 173: 549
doi: 10.1016/j.envres.2019.03.069 pmid: 31004909
[15] Qiao Y X, Wang S, Liu B, et al. Synergistic effect of corrosion and cavitation erosion of high nitrogen stainless steel [J]. Acta Metall. Sin., 2016, 52: 233
doi: 10.11900/0412.1961.2015.00282
[15] (乔岩欣, 王 硕, 刘 彬等. 新型高氮钢的腐蚀和空蚀交互作用研究 [J]. 金属学报, 2016, 52: 233)
doi: 10.11900/0412.1961.2015.00282
[16] Yong X Y, Xiao N, Shen H J, et al. Responses of the corroded surface layer of austenitic stainless steel to different corrosive conditions under cavitation [J]. Mater. Sci. Eng., 2016, A671: 118
[17] Luo Q, Zhang Q, Qin Z B, et al. The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy [J]. J. Alloys Compd., 2018, 747: 861
doi: 10.1016/j.jallcom.2018.03.103
[18] Niederhofer P, Richrath L, Huth S, et al. Influence of conventional and powder-metallurgical manufacturing on the cavitation erosion and corrosion of high interstitial CrMnCN austenitic stainless steels [J]. Wear, 2016, 360-361: 67
doi: 10.1016/j.wear.2016.04.017
[19] Basumatary J, Nie M, Wood R J K. The synergistic effects of cavitation erosion-corrosion in ship propeller materials [J]. J. Bio- Tribo-Corros., 2015, 1: 1
doi: 10.1007/s40735-014-0001-9
[20] Selvam K, Saini J, Perumal G, et al. Exceptional cavitation erosion-corrosion behavior of dual-phase bimodal structure in austenitic stainless steel [J]. Tribol. Int., 2019, 134: 77
doi: 10.1016/j.triboint.2019.01.018
[21] Basumatary J, Wood R J K. Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution [J]. Wear, 2017, 376-377: 1286
doi: 10.1016/j.wear.2017.01.047
[22] ASTM. ASTM G134-17 Standard test method for erosion of solid materials by cavitating liquid jet [S]. West Conshohocken, PA: ASTM International, 2017
[23] Soyama H, Takakuwa O. Enhancing the aggressive strength of a cavitating jet and its practical application [J]. J. Fluid Sci. Technol., 2011, 6: 510
doi: 10.1299/jfst.6.510
[24] Qu X H. The corrossion susceptibility study on 304 stainless steel in circulating cooling water containing chloride ion [D]. Beijing: Beijing University of Chemical Technology, 2008
[24] (曲秀华. 304不锈钢在含氯离子循环冷却水中腐蚀敏感性的影响 [D]. 北京: 北京化工大学, 2008)
[25] Yang L Q, Zhang C, Xiao J S. Effect of NaCl solution concentration on acoustic emission feature during corrosion of 304 stainless steel [J]. Trans. Mater. Heat Treat., 2014, 35(12): 184
[25] (杨立清, 张 超, 肖俊生. NaCl溶液浓度对304不锈钢腐蚀过程的声发射特征影响 [J]. 材料热处理学报, 2014, 35(12): 184)
[26] Zhuang D D, Chen W B, Ouyang Y D, et al. Comparative investigation of ultrasonic cavitation erosion mechanism for low-carbon and 304 stainless steels [J]. Surf. Technol., 2019, 48(1): 225
[26] (庄栋栋, 陈文博, 欧阳亚东等. 低碳钢与304不锈钢的超声空蚀机理对比研究 [J]. 表面技术, 2019, 48(1): 225)
[27] Zhang T, Liu H X, Kang C, et al. Ultrasonic cavitation erosion behavior and mechanism of Pb-brass alloy in different liquids [J]. Surf. Technol., 2018, 47(1): 109
[27] (张 桃, 刘海霞, 康 灿等. 铅黄铜合金在不同溶体介质中的超声空蚀行为及机理 [J]. 表面技术, 2018, 47(1): 109)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[7] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.