|
|
NaCl溶液腐蚀后304不锈钢的射流空蚀特征 |
刘海霞( ), 陈金豪, 陈杰, 刘光磊 |
江苏大学材料科学与工程学院 镇江 212013 |
|
Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution |
LIU Haixia( ), CHEN Jinhao, CHEN Jie, LIU Guanglei |
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China |
引用本文:
刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
Haixia LIU,
Jinhao CHEN,
Jie CHEN,
Guanglei LIU.
Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. Acta Metall Sin, 2020, 56(10): 1377-1385.
[1] |
Lebon G S B, Tzanakis I, Pericleous K, et al. Experimental and numerical investigation of acoustic pressures in different liquids [J]. Ultrasonics-Sonochem, 2018, 42: 411
doi: 10.1016/j.ultsonch.2017.12.002
|
[2] |
Franc J P, Michel J M. Fundamentals of Cavitation [M]. Holland: Kluwer Academic Publishers, 2004: 269
|
[3] |
Peng K W, Tian S C, Li G S, et al. Mapping cavitation impact field in a submerged cavitating jet [J]. Wear, 2018, 396-397: 22
doi: 10.1016/j.wear.2017.11.006
|
[4] |
Zhou M M, Liu H X, Kang C, et al. Resistance of curved surfaces to the cavitation erosion produced through high-pressure submerged waterjet [J]. Wear, 2019, 440-441: 203091
doi: 10.1016/j.wear.2019.203091
|
[5] |
Liu H X, Kang C, Zhang W, et al. Flow structures and cavitation in submerged waterjet at high jet pressure [J]. Exp. Thermal Fluid Sci., 2017, 88: 504
doi: 10.1016/j.expthermflusci.2017.07.003
|
[6] |
Lehocka D, Klich J, Foldyna J, et al. Copper alloys disintegration using pulsating water jet [J]. Measurement, 2016, 82: 375
doi: 10.1016/j.measurement.2016.01.014
|
[7] |
Kang C, Liu H X, Zhang T, et al. Investigation of submerged waterjet cavitation through surface property and flow information in ambient water [J]. Appl. Surf. Sci., 2017, 425: 915
doi: 10.1016/j.apsusc.2017.07.115
|
[8] |
Wu C Q, Ren R M, Liu P T, et al. Cavitation erosion of 304 stainless steel induced by caviting water jet [J]. Chin. J. Mater. Res., 2016, 30: 473
doi: 10.11901/1005.3093.2015.730
|
[8] |
(吴从前, 任瑞铭, 刘鹏涛等. 304不锈钢空化水射流表面空蚀损伤研究 [J]. 材料研究学报, 2016, 30: 473)
doi: 10.11901/1005.3093.2015.730
|
[9] |
Liu H, Zhao X J, Liu P T, et al. Cavitation damage on surface of pure copper by cavitating water jet erosion [J]. Mater. Mech. Eng., 2017, 41(5): 68
|
[9] |
(刘 欢, 赵秀娟, 刘鹏涛等. 空化水射流冲蚀纯铜的表面空蚀损伤 [J]. 机械工程材料, 2017, 41(5): 68)
|
[10] |
Azhari A, Schindler C, Hilbert K, et al. Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304 [J]. Surf. Coat. Technol., 2014, 258: 1176
doi: 10.1016/j.surfcoat.2014.07.013
|
[11] |
Zheng Z B, Zheng Y G. Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2016, 112: 657
doi: 10.1016/j.corsci.2016.09.005
|
[12] |
Zhao Y L, Zhou F, Yao J, et al. Erosion-corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement [J]. Wear, 2015, 328-329: 464
doi: 10.1016/j.wear.2015.03.017
|
[13] |
Aribo S, Barker R, Hu X M, et al. Erosion-corrosion behaviour of lean duplex stainless steels in 3.5% NaCl solution [J]. Wear, 2013, 302: 1602
doi: 10.1016/j.wear.2012.12.007
|
[14] |
Kovendhan M, Kang H, Jeong S, et al. Study of stainless steel electrodes after electrochemical analysis in sea water condition [J]. Environ. Res., 2019, 173: 549
doi: 10.1016/j.envres.2019.03.069
pmid: 31004909
|
[15] |
Qiao Y X, Wang S, Liu B, et al. Synergistic effect of corrosion and cavitation erosion of high nitrogen stainless steel [J]. Acta Metall. Sin., 2016, 52: 233
doi: 10.11900/0412.1961.2015.00282
|
[15] |
(乔岩欣, 王 硕, 刘 彬等. 新型高氮钢的腐蚀和空蚀交互作用研究 [J]. 金属学报, 2016, 52: 233)
doi: 10.11900/0412.1961.2015.00282
|
[16] |
Yong X Y, Xiao N, Shen H J, et al. Responses of the corroded surface layer of austenitic stainless steel to different corrosive conditions under cavitation [J]. Mater. Sci. Eng., 2016, A671: 118
|
[17] |
Luo Q, Zhang Q, Qin Z B, et al. The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy [J]. J. Alloys Compd., 2018, 747: 861
doi: 10.1016/j.jallcom.2018.03.103
|
[18] |
Niederhofer P, Richrath L, Huth S, et al. Influence of conventional and powder-metallurgical manufacturing on the cavitation erosion and corrosion of high interstitial CrMnCN austenitic stainless steels [J]. Wear, 2016, 360-361: 67
doi: 10.1016/j.wear.2016.04.017
|
[19] |
Basumatary J, Nie M, Wood R J K. The synergistic effects of cavitation erosion-corrosion in ship propeller materials [J]. J. Bio- Tribo-Corros., 2015, 1: 1
doi: 10.1007/s40735-014-0001-9
|
[20] |
Selvam K, Saini J, Perumal G, et al. Exceptional cavitation erosion-corrosion behavior of dual-phase bimodal structure in austenitic stainless steel [J]. Tribol. Int., 2019, 134: 77
doi: 10.1016/j.triboint.2019.01.018
|
[21] |
Basumatary J, Wood R J K. Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution [J]. Wear, 2017, 376-377: 1286
doi: 10.1016/j.wear.2017.01.047
|
[22] |
ASTM. ASTM G134-17 Standard test method for erosion of solid materials by cavitating liquid jet [S]. West Conshohocken, PA: ASTM International, 2017
|
[23] |
Soyama H, Takakuwa O. Enhancing the aggressive strength of a cavitating jet and its practical application [J]. J. Fluid Sci. Technol., 2011, 6: 510
doi: 10.1299/jfst.6.510
|
[24] |
Qu X H. The corrossion susceptibility study on 304 stainless steel in circulating cooling water containing chloride ion [D]. Beijing: Beijing University of Chemical Technology, 2008
|
[24] |
(曲秀华. 304不锈钢在含氯离子循环冷却水中腐蚀敏感性的影响 [D]. 北京: 北京化工大学, 2008)
|
[25] |
Yang L Q, Zhang C, Xiao J S. Effect of NaCl solution concentration on acoustic emission feature during corrosion of 304 stainless steel [J]. Trans. Mater. Heat Treat., 2014, 35(12): 184
|
[25] |
(杨立清, 张 超, 肖俊生. NaCl溶液浓度对304不锈钢腐蚀过程的声发射特征影响 [J]. 材料热处理学报, 2014, 35(12): 184)
|
[26] |
Zhuang D D, Chen W B, Ouyang Y D, et al. Comparative investigation of ultrasonic cavitation erosion mechanism for low-carbon and 304 stainless steels [J]. Surf. Technol., 2019, 48(1): 225
|
[26] |
(庄栋栋, 陈文博, 欧阳亚东等. 低碳钢与304不锈钢的超声空蚀机理对比研究 [J]. 表面技术, 2019, 48(1): 225)
|
[27] |
Zhang T, Liu H X, Kang C, et al. Ultrasonic cavitation erosion behavior and mechanism of Pb-brass alloy in different liquids [J]. Surf. Technol., 2018, 47(1): 109
|
[27] |
(张 桃, 刘海霞, 康 灿等. 铅黄铜合金在不同溶体介质中的超声空蚀行为及机理 [J]. 表面技术, 2018, 47(1): 109)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|