|
|
基体表面喷丸处理对纳米晶涂层循环氧化行为的影响 |
黄鼎1, 乔岩欣1( ), 杨兰兰1, 王金龙2, 陈明辉2, 朱圣龙3, 王福会2 |
1江苏科技大学 材料科学与工程学院 镇江 212003 2东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819 3中国科学院金属研究所 沈阳 110016 |
|
Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating |
HUANG Ding1, QIAO Yanxin1( ), YANG Lanlan1, WANG Jinlong2, CHEN Minghui2, ZHU Shenglong3, WANG Fuhui2 |
1School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
Ding HUANG,
Yanxin QIAO,
Lanlan YANG,
Jinlong WANG,
Minghui CHEN,
Shenglong ZHU,
Fuhui WANG.
Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. Acta Metall Sin, 2023, 59(5): 668-678.
1 |
Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bull., 2012, 37: 891
|
2 |
Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. Int. Mater. Rev, 2013, 58: 315
doi: 10.1179/1743280413Y.0000000019
|
3 |
Long H B, Wei H, Liu Y N, et al. Effect of lattice misfit on the evolution of the dislocation structure in Ni-based single crystal superalloys during thermal exposure[J]. Acta Mater., 2016, 120: 95
doi: 10.1016/j.actamat.2016.08.035
|
4 |
Spathara D, Sergeev D, Kobertz D, et al. Thermodynamic study of single crystal, Ni-based superalloys in the γ + γ′ two-phase region using Knudsen Effusion Mass Spectrometry, DSC and SEM[J]. J. Alloys Compd., 2021, 870: 159295
doi: 10.1016/j.jallcom.2021.159295
|
5 |
Rae C M F, Hook M S, Reed R C. The effect of TCP morphology on the development of aluminide coated superalloys[J]. Mater. Sci. Eng., 2005, A396: 231
|
6 |
Pint B A, Haynes J A, Besmann T M. Effect of Hf and Y alloy additions on aluminide coating performance[J]. Surf. Coat. Technol., 2010, 204: 3287
doi: 10.1016/j.surfcoat.2010.03.040
|
7 |
Pillai R, Wessel E, Nowak W J, et al. Predicting effect of base alloy composition on oxidation- and interdiffusion-induced degradation of an MCrAlY coating[J]. JOM, 2018, 70: 1520
doi: 10.1007/s11837-018-2950-9
|
8 |
Song P, Subanovic M, Toscano J, et al. Effect of atmosphere composition on the oxidation behavior of MCrAlY coatings[J]. Mater. Corros., 2011, 62: 699
doi: 10.1002/maco.201005851
|
9 |
Hesnawi A, Li H F, Zhou Z H, et al. Effect of surface condition during pre-oxidation treatment on isothermal oxidation behavior of MCrAlY bond coat prepared by EB-PVD[J]. Surf. Coat. Technol., 2007, 201: 6793
doi: 10.1016/j.surfcoat.2006.09.076
|
10 |
Wu M Y, Chen M H, Zhu S L, et al. Effect of sand blasting on oxidation behavior of K38G superalloy at 1000oC[J]. Corros. Sci., 2015, 92: 256
doi: 10.1016/j.corsci.2014.12.015
|
11 |
Ostwald C, Grabke H J. Initial oxidation and chromium diffusion. I. Effects of surface working on 9-20% Cr steels[J]. Corros. Sci., 2004, 46: 1113
doi: 10.1016/j.corsci.2003.09.004
|
12 |
Kawaura H, Kawahara H, Nishino K, et al. New surface treatment using shot blast for improving oxidation resistance of TiAl-base alloys[J]. Mater. Sci. Eng., 2002, A329-331: 589
|
13 |
Wang H, Liu Y B, Ning X J, et al. Oxidation of Ni-based single crystal after grit-blasting during exposure at high temperature[J]. Mater. High Temp., 2017, 34: 215
doi: 10.1080/09603409.2017.1281869
|
14 |
Karaoglanli A C, Doleker K M, Demirel B, et al. Effect of shot peening on the oxidation behavior of thermal barrier coatings[J]. Appl. Surf. Sci., 2015, 354: 314
doi: 10.1016/j.apsusc.2015.06.113
|
15 |
Tan L, Ren X, Sridharan K, et al. Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation[J]. Corros. Sci., 2008, 50: 2040
doi: 10.1016/j.corsci.2008.04.008
|
16 |
Ni L Y, Wu Z L, Zhou C G. Effects of surface modification on isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 173
doi: 10.1016/S1002-0071(12)60052-5
|
17 |
Kane K A, Lance M J, Sweet M, et al. The effect of bond coating surface modification on the performance of atmospheric plasma spray thermal barrier coatings[J]. Surf. Coat. Technol., 2019, 378: 125042
doi: 10.1016/j.surfcoat.2019.125042
|
18 |
Li Z M, Qian S Q, Wang W. Influence of superalloy substrate roughness on adhesion and oxidation behavior of magnetron-sputtered NiCoCrAlY coatings[J]. Appl. Surf. Sci., 2011, 257: 10414
doi: 10.1016/j.apsusc.2011.06.120
|
19 |
Wang L, Jiang W G, Li X W, et al. Effect of surface roughness on the oxidation behavior of a directionally solidified Ni-based superalloy at 1100oC[J]. Acta. Metall. Sin. (Engl. Lett.), 2015, 28: 381
doi: 10.1007/s40195-015-0211-2
|
20 |
Gil A, Shemet V, Vassen R, et al. Effect of surface condition on the oxidation behaviour of MCrAlY coatings[J]. Surf. Coat. Technol., 2006, 201: 3824
doi: 10.1016/j.surfcoat.2006.07.252
|
21 |
Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review[J]. Corros. Commun., 2021, 1: 58
|
22 |
Zhao S, Liu C H, Yang J J, et al. Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding[J]. Surf. Coat. Technol., 2021, 417: 127228
doi: 10.1016/j.surfcoat.2021.127228
|
23 |
Li Z, Liu C H, Chen Q S, et al. Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering[J]. Corros. Sci., 2021, 191: 109755
doi: 10.1016/j.corsci.2021.109755
|
24 |
Wang J L, Chen M H, Yang L L, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy[J]. Corros. Sci., 2015, 98: 530
doi: 10.1016/j.corsci.2015.05.062
|
25 |
Yeom H, Maier B, Mariani R, et al. Magnetron sputter deposition of zirconium-silicide coating for mitigating high temperature oxidation of zirconium-alloy[J]. Surf. Coat. Technol., 2017, 316: 30
doi: 10.1016/j.surfcoat.2017.03.018
|
26 |
Yang L L, Zhou Z H, Yang R Z, et al. Effect of Al and Cr on the oxidation behavior of nanocrystalline coatings at 1050oC[J]. Corros. Sci., 2022, 200: 110191
doi: 10.1016/j.corsci.2022.110191
|
27 |
Yang L L, Chen M H, Cheng Y X, et al. Effects of surface finish of single crystal superalloy substrate on cyclic thermal oxidation of its nanocrystalline coating[J]. Corros. Sci., 2016, 111: 313
doi: 10.1016/j.corsci.2016.04.023
|
28 |
Chen M H, Shen M L, Zhu S L, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000oC[J]. Corros. Sci., 2013, 73: 331
doi: 10.1016/j.corsci.2013.04.022
|
29 |
Wang J L, Chen M H, Yang L L, et al. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition[J]. Appl. Surf. Sci., 2016, 366: 245
doi: 10.1016/j.apsusc.2016.01.088
|
30 |
Yoon K E, Isheim D, Noebe R D, et al. Nanoscale studies of the chemistry of a René N6 superalloy[J]. Interf. Sci., 2001, 9: 249
doi: 10.1023/A:1015158728191
|
31 |
Zietara M, Neumeier S, Göken M, et al. Characterization of γ and γ′ phases in 2nd and 4th generation single crystal nickel-base superalloys[J]. Met. Mater. Int., 2017, 23: 126
doi: 10.1007/s12540-017-6109-y
|
32 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
|
33 |
Picha R, Brož P, Buršı́k J. Phase equilibria in the Ni-Al-Cr-Ti system at 1000 and 1100oC[J]. J. Alloys Compd., 2004, 378: 75
doi: 10.1016/j.jallcom.2003.10.072
|
34 |
Yang L L, Wang J L, Yang R Z, et al. Oxidation behavior of a nanocrystalline coating with low Ta content at high temperature[J]. Corros. Sci, 2021, 180: 109182
doi: 10.1016/j.corsci.2020.109182
|
35 |
Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution of rhenium in a nickel-based superalloy[J]. Mater. Sci. Eng., 1998, A250: 88
|
36 |
He C, Liu L, Huang T W, et al. The effects of misfit and diffusivity on γʹ rafting in Re and Ru containing nickel based single crystal superalloys—Details in thermodynamics and dynamics[J]. Vacuum, 2021, 183: 109839
doi: 10.1016/j.vacuum.2020.109839
|
37 |
Buchanan D J, John R, Brockman R A. Relaxation of shot-peened residual stresses under creep loading[J]. J. Eng. Mater. Technol., 2009, 131: 031008
|
38 |
Mathur H N, Panwisawas C, Jones C N, et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Mater., 2017, 129: 112
doi: 10.1016/j.actamat.2017.02.058
|
39 |
Durham R N, Gleeson B, Young D J. Factors affecting chromium carbide precipitate dissolution during alloy oxidation[J]. Oxid. Met., 1998, 50: 139
doi: 10.1023/A:1018880019395
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|