Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 926-938    DOI: 10.11900/0412.1961.2021.00597
  研究论文 本期目录 | 过刊浏览 |
9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源
陈润农1,2,3, 李昭东1(), 曹燕光1,4, 张启富2, 李晓刚3
1钢铁研究总院 工程用钢研究所 北京 100081
2钢铁研究总院 先进金属材料涂镀国家工程实验室 北京 100081
3北京科技大学 新材料技术研究院 北京 100083
4马鞍山钢铁股份有限公司 马鞍山 243003
Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment
CHEN Runnong1,2,3, LI Zhaodong1(), CAO Yanguang1,4, ZHANG Qifu2, LI Xiaogang3
1Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2National Engineering Laboratory of Advanced Coating Technology for Metals, Central Iron and Steel Research Institute, Beijing 100081, China
3Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
4Maanshan Iron & Steel Co. Ltd., Maanshan 243003, China
引用本文:

陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
Runnong CHEN, Zhaodong LI, Yanguang CAO, Qifu ZHANG, Xiaogang LI. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. Acta Metall Sin, 2023, 59(7): 926-938.

全文: PDF(5401 KB)   HTML
摘要: 

通过干湿循环测试、SEM、TEM、XRD和电化学方法研究了一种9%Cr合金钢在含Cl-环境中的初期腐蚀行为,探讨了复合夹杂物(Mg, Si, Al)O-MnS和富Cr的M23C6对其局部腐蚀行为的影响。结果表明,合金钢初期耐蚀性能较09CuPCrNi提高了12倍以上,在360 h的干湿循环过程中发生局部腐蚀,锈层下的蚀坑深度符合Lognormal分布,蚀坑的最大深度(Dmax)与平均深度(Dave)随时间(t)变化规律分别符合幂函数Dmax = 8.4844 × t 0.65717Dave = 7.3181 × t 0.53866。合金钢锈层的致密度和α / γ* (α-FeOOH / (γ-FeOOH + Fe3O4 + β-FeOOH)含量比)随腐蚀时间延长均不断增加,但高Cr的添加推迟了腐蚀进程,使得锈层未完整覆盖表面,仅提供了有限的保护能力,因而根据幂函数拟合失重数据得到的指数大于1。复合夹杂物(Mg, Si, Al)O-MnS通过MnS或单一MgO区域的局部优先溶解导致亚稳态点蚀,但其在2%NaCl溶液中浸泡300 min并未诱发周围基体溶解,而富Cr的M23C6析出导致基体的Cr消耗是优先诱发局部腐蚀的主要原因。

关键词 含Cl-环境局部腐蚀夹杂物M23C69%Cr合金钢    
Abstract

The South China Sea is a marine atmosphere environment with high humidity, high salt content, and strong radiation. Traditional weathering steel and 3Ni advanced weathering steel cannot meet the service requirements in the South China Sea environment, necessitating the development of steel with improved corrosion resistance. Alloy steels with Cr of 2.5%-10% (mass fraction) provide a marginal gain in corrosion performance at a low cost and have great potential for marine atmospheric application. A 9%Cr alloy steel was designed to obtain higher corrosion resistance, and the relevant results can offer a reference for developing novel corrosion-resistant steels for the marine atmospheric environment. The initial corrosion behavior of 9%Cr alloy steel in a Cl- containing environment was investigated using dry-wet cycle test, SEM, TEM, XRD, and electrochemical approaches, and the effects of composite inclusions (Mg, Si, Al)O-MnS and Cr-rich M23C6 on its local corrosion behavior were discussed. The findings demonstrate that the initial corrosion resistance of alloy steel was more than 12 times that of 09CuPCrNi, and local corrosion occurred during the 360-h dry-wet cycle. Pits' depth below the rust layer followed the lognormal distribution, and the pits' maximum depth (Dmax) and average depth (Dave) with time (t) were in line with the power functions Dmax = 8.4844 × t 0.65717 and Dave = 7.3181 × t 0.53866, respectively. The rust layer's compactness and the α / γ* ratio increased over time, but the addition of high Cr delayed the corrosion. Thus, the rust layer did not entirely cover the surface and only provided limited protection, and an exponent value obtained by fitting the weight loss according to the power function was greater than 1. (Mg, Si, Al)O-MnS caused metastable pitting corrosion through a preferential dissolution of MnS or MgO regions, but its immersion in 2%NaCl solution for 300 min did not induce surrounding matrix's dissolution. The Cr consumption caused by Cr-rich M23C6's precipitation was the primary reason for preferentially inducing local corrosion.

Key wordsCl- containing environment    local corrosion    inclusion    M23C6    9%Cr alloy steel
收稿日期: 2021-12-31     
ZTFLH:  TG174.22  
基金资助:国家重点研发计划项目(2021YFB3701702);钢铁研究总院基金项目(20G61860A)
通讯作者: 李昭东,cisri_lizhaodong@126.com,主要从事高性能交通与建筑用钢的基础理论研究与关键技术开发
Corresponding author: LI Zhaodong, professor senior engineer, Tel: (010)62181284, E-mail: cisri_lizhaodong@126.com
作者简介: 陈润农,男,1993年生,博士生
图1  9Cr钢的制造工艺示意图
SteelCSiMnCrNiCoCuFe
9Cr0.020.500.908.981.500.300.015Bal.
09CuPCrNi0.100.400.300.300.02-0.300Bal.
表1  9Cr和09CuPCrNi钢的化学成分 (mass fraction / %)
图2  9Cr和09CuPCrNi钢的腐蚀速率和失重随时间的变化趋势
图3  9Cr钢腐蚀不同时间后的表面宏观和微观腐蚀形貌
PositionOCrMnFeCoNiClC
13.968.651.1883.860.352.00--
242.287.20-46.31--3.430.78
346.006.08-45.72--2.20-
441.903.67-49.21--5.22-
表2  图3c1~c4中方形区域对应的EDS结果 (mass fraction / %)
图4  9Cr钢腐蚀不同时间后的锈层截面形貌和相应的主要元素分布
图5  9Cr钢腐蚀360 h后锈层截面的EPMA面扫描图
图6  9Cr钢腐蚀样品在2%NaCl溶液中的EIS及拟合等效电路图
Time / hRs / (Ω·cm2)Y0 / (10-3 s-n ·Ω-1·cm-2)nRp / (Ω·cm2)χ2 / 10-3
721.1276.1540.6797778.13.877
1681.7273.8410.60681694.01.999
2642.7743.6620.6414860.21.549
3604.0129.5200.5094704.82.809
表3  9Cr钢腐蚀样品在2%NaCl溶液中的EIS拟合数据
图7  9Cr钢腐蚀不同时间后表面腐蚀产物的XRD谱和半定量结果
图8  9Cr钢腐蚀不同时间后的表面蚀坑深度分布图和蚀坑深度变化规律
图9  9Cr钢腐蚀不同时间后表面蚀坑的径深比分布图
图10  9Cr钢在2%NaCl溶液中的极化曲线
图11  9Cr钢表面代表性亚稳态点蚀形貌
图12  2种典型复合夹杂物的形貌及EDS元素分布图
图13  2种典型复合夹杂物在2%NaCl溶液中浸泡不同时间后的腐蚀形貌
图14  9Cr钢在2%NaCl溶液中浸泡300 min后的典型局部腐蚀形貌及元素分布
图15  9Cr钢中M23C6的分布特征和成分分析
1 Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
1 侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
2 Huang T, Chen X P, Wang X D, et al. A study on the rust characteristics and corrosion resistance of high strength weathering steels in NaCl solution [J]. J. Mech. Eng., 2017, 53(20): 45
doi: 10.3901/JME.2017.20.045
2 黄 涛, 陈小平, 王向东 等. 高强耐候钢在NaCl溶液中的腐蚀锈层特征和耐腐蚀性研究 [J]. 机械工程学报, 2017, 53(20): 45
3 Ma Y T, Li Y, Wang F H. Weatherability of 09CuPCrNi steel in a tropical marine environment [J]. Corros. Sci., 2009, 51: 1725
doi: 10.1016/j.corsci.2009.04.024
4 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
4 梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1
5 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
6 Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
7 Usami A, Kihira H, Kusunoki T. 3%-Ni weathering steel plate for uncoated bridges at high airborne salt environment [R]. Tokyo, Japan: Nippon Steel Technical Development Bureau, 2003
8 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
9 Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
doi: 10.1016/j.apsusc.2017.12.018
10 Presuel-Moreno F, Scully J R, Sharp S R. Literature review of commercially available alloys that have potential as low-cost, corrosion-resistant concrete reinforcement [J]. Corrosion, 2010, 66: 086001
11 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
12 Cano H, Díaz I, de la Fuente D, et al. Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities [J]. Mater. Corros., 2018, 69: 8
13 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
14 Zhang Q C, Wu J S, Zheng W L, et al. Characterization of rust layer formed on low alloy steel exposed in marine atmosphere [J]. J. Mater. Sci. Technol., 2002, 18: 455
15 Zhang Q C, Wu J S, Wang J J, et al. Corrosion behavior of weathering steel in marine atmosphere [J]. Mater. Chem. Phys., 2003, 77: 603
doi: 10.1016/S0254-0584(02)00110-4
16 Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
17 Yamashita M, Shimizu T, Konishi H, et al. Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays [J]. Corros. Sci., 2003, 45: 381
doi: 10.1016/S0010-938X(02)00093-8
18 Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
19 Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
doi: 10.1016/j.corsci.2011.08.028
20 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
21 Kamimura T, Yamashita M, Uchida H, et al. Correlation between corrosion rate and composition of crystalline corrosion products formed on weathering steels [J]. J. Jpn Inst. Met. Mater., 2001, 65: 922
22 Okada H, Hosoi Y, Yukawa K, et al. Structure of the protective and decorative rust formed on low-alloy steels in the atmosphere [J]. Trans. ASM, 1969, 62: 278
23 Almeida E, Morcillo M, Rosales B. Atmospheric corrosion of mild steel. Part II—Marine atmospheres [J]. Mater. Corros., 2000, 51: 865
doi: 10.1002/(ISSN)1521-4176
24 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 158
24 曹楚南. 腐蚀电化学原理 [M]. 第 3版, 北京: 化学工业出版社, 2008: 158
25 Rovere C A D, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
doi: 10.1016/j.corsci.2011.12.022
26 Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
doi: 10.1016/j.electacta.2009.10.065
27 Liu B, Mu X, Yang Y, et al. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 1228
doi: 10.1016/j.jmst.2019.01.008
28 Dillmann P, Mazaudier F, Hoerlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
29 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
30 Newman R C. Understanding the corrosion of stainless steel [J]. Corrosion, 2001, 57: 1030
doi: 10.5006/1.3281676
31 Tang Y M, Zuo Y, Wang J N, et al. The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions [J]. Corros. Sci., 2014, 80: 111
doi: 10.1016/j.corsci.2013.11.015
32 Yang Z X, Kan B, Li J X, et al. Pitting initiation and propagation of X70 pipeline steel exposed to chloride-containing environments [J]. Materials, 2017, 10: 1076
doi: 10.3390/ma10091076
33 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
doi: 10.1016/j.corsci.2018.04.007
34 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
doi: 10.5006/1837
35 Li Y B, Liu J, Deng Y D, et al. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution [J]. J. Alloys Compd., 2016, 673: 28
doi: 10.1016/j.jallcom.2016.02.224
36 Tyurin A G, Pyshmintsev I Y, Kostitsyna I V, et al. Thermodynamics of chemical and electrochemical stability of corrosion active nonmetal inclusions [J]. Prot. Met., 2007, 43: 34
doi: 10.1134/S0033173207010043
37 Luo H, Wang X Z, Dong C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution [J]. Corros. Sci., 2017, 124: 178
doi: 10.1016/j.corsci.2017.05.021
38 Lu H H, Li W Q, Du L Y, et al. The effects of martensitic transformation and (Fe, Cr)23C6 precipitation on the properties of transformable ferritic stainless steel [J]. Mater. Sci. Eng., 2019, A754: 502
39 Ly R, Hartwig K T, Castaneda H. Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061 [J]. Corros. Sci., 2018, 139: 47
doi: 10.1016/j.corsci.2018.04.023
40 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
[1] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[4] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[5] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[6] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[7] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[8] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[9] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[10] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[11] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[12] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[13] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 钟晓聪, 蒋良兴, 吕晓军, 赖延清, 李劼, 刘业翔. 氯离子对Pb-Ag-RE合金阳极电化学行为的影响[J]. 金属学报, 2015, 51(3): 378-384.