Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 324-333    DOI: 10.11900/0412.1961.2021.00386
  研究论文 本期目录 | 过刊浏览 |
激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为
汤雁冰1, 沈新旺1,2, 刘志红2, 乔岩欣2(), 杨兰兰2, 卢道华1, 邹家生2, 许静1
1.江苏科技大学 海洋装备研究院 镇江 212003
2.江苏科技大学 材料科学与工程学院 镇江 212003
Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution
TANG Yanbing1, SHEN Xinwang1,2, LIU Zhihong2, QIAO Yanxin2(), YANG Lanlan2, LU Daohua1, ZOU Jiasheng2, XU Jing1
1.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
Yanbing TANG, Xinwang SHEN, Zhihong LIU, Yanxin QIAO, Lanlan YANG, Daohua LU, Jiasheng ZOU, Jing XU. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. Acta Metall Sin, 2022, 58(3): 324-333.

全文: PDF(2748 KB)   HTML
摘要: 

采用开路电位、动电位极化、电化学阻抗、恒电位极化、Mott-Schottky和X射线光电子能谱等测试技术研究了激光选区熔化增材制造Inconel 718合金(SLM Inconel 718)在0.1 mol/L NaOH溶液中的腐蚀行为,并与商用轧制Inconel 718合金(R Inconel 718)进行对比。结果表明,SLM Inconel 718合金与R Inconel 718合金均发生点蚀,SLM Inconel 718合金的点蚀优先发生在熔池边界和孔隙部位。相比R Inconel 718合金,SLM Inconel 718合金的活性更低、腐蚀速率更小、耐蚀性能更优,其主要原因在于:SLM Inconel 718合金表面生成的钝化膜中多孔NiO的含量更低,致密Cr2O3的含量更高,钝化膜更加致密,并且钝化膜的载流子密度更低,因此,SLM Inconel 718合金的钝化膜保护性能更好,耐蚀性能更优。

关键词 增材制造Inconel 718合金激光选区熔化钝化膜碱性溶液    
Abstract

Inconel 718 alloy is a popular material used for additive manufacturing. Corrosion involvement is crucial for its application. The corrosion behaviors of the additive manufacturing Inconel 718 alloy in neutral NaCl solution and acidic solution have been thoroughly investigated and documented. However, information available in the literature regarding the corrosion behaviors of additive manufacturing Inconel 718 alloy in alkaline solution is insufficient. In this paper, the corrosion behavior of Inconel 718 alloy fabricated through selective laser melting (SLM Inconel 718) in NaOH solution was studied using open circuit potential (OCP), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), potentiostats polarization, Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results were compared with a commercial rolled Inconel 718 alloy (R Inconel 718). Pitting corrosion was observed in both SLM Inconel 718 alloy and R Inconel 718 alloy. SLM Inconel 718 alloy has lower activity and corrosion rate compared with R Inconel 718 alloy. Because the passive film formed on the surface of SLM Inconel 718 alloy has a lower content of porous NiO and a higher content of compact Cr2O3, the passive film is more compact; however, the donor/acceptor density is lower in the passive film.

Key wordsadditive manufacturing    Inconel 718    selective laser melting    passive film    alkaline solution
收稿日期: 2021-09-07     
ZTFLH:  TG172.5  
基金资助:国家重点研发计划项目(2018YFC0309100);工信部高技术船舶项目No.2018[473],以及江苏高校自然科学基金项目
作者简介: 汤雁冰,男,1982年生,博士,教授级高级工程师
AlloyNiCrNbMoTiAlCoCuMnFe
SLM Inconel 71852.5319.005.103.020.960.480.0310.0350.07418.77
R Inconel 71853.2019.205.103.100.900.300.850.250.2916.81
表1  激光选区熔化(SLM)和轧制(R)态Inconel 718合金的化学成分[16] (mass fraction / %)
图1  SLM Inconel 718和R Inconel 718的OM和SEM像
图2  SLM Inconel 718和R Inconel 718在0.1 mol/L NaOH溶液中的开路电位(EOCP)
图3  SLM Inconel 718和R Inconel 718在0.1 mol/L NaOH溶液中的动电位极化曲线
图4  SLM Inconel 718和R Inconel 718腐蚀前后的表面形貌
图5  SLM Inconel 718和R Inconel 718在0.1 mol/L NaOH溶液中的EIS(a) Nyquist plots (b) Bode plots
图6  EIS等效电路示意图
Alloy

Rs

Ω·cm2

Qf

10-5 F·cm-2

n

Rf

104 Ω·cm2

Cdl

10-5 F·cm-2

Rct

105 Ω·cm2

SLM Inconel 71813.97 ± 0.056.04 ± 0.450.89 ± 0.015.79 ± 0.113.69 ± 0.193.44 ± 0.08
R Inconel 7189.52 ± 0.058.72 ± 0.100.88 ± 0.013.54 ± 0.104.27 ± 0.292.47 ± 0.09
表2  SLM Inconel 718和R Inconel 718的EIS拟合结果
图7  SLM Inconel 718和R Inconel 718在0.1 mol/L NaOH溶液中的电流密度随时间变化的关系曲线以及与其对应的双对数曲线
图8  SLM Inconel 718和R Inconel 718在0.1 mol/L NaOH溶液中的Mott-Schottky曲线以及供体密度(Nd)和受体密度(Na)
图9  SLM Inconel 718和R Inconel 718合金的XPS谱Color online(a, b) Ni2p (c, d) Fe2p (e, f) Cr2p (g, h) Mo3d (i, j) Nb3d
图10  SLM Inconel 718和R Inconel 718合金钝化膜中不同元素的深度分布
图11  SLM Inconel 718和R Inconel 718合金钝化膜中不同成分的深度分布
1 Kong D C , Dong C F , Ni X Q , et al . Corrosion of metallic materials fabricated by selective laser melting [J]. npj Mater. Degrad., 2019, 3: 24
2 Dai N W , Zhang L C , Zhang J X , et al . Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2016, 102: 484
3 Kong D C , Ni X Q , Dong C F , et al . Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting [J]. Constr. Build. Mater., 2019, 221: 720
4 Revilla R I , Liang J W , Godet S , et al . Local Corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM [J]. J. Electrochem. Soc., 2016, 164: C27
5 Cao G H , Sun T Y , Wang C H , et al . Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018,136: 398
6 Chlebus E , Gruber K , Kuźnicka B , et al . Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mater. Sci. Eng. , 2015, A639: 647
7 Borisov E V , Popovich V A , Popovich A A , et al . Selective laser melting of Inconel 718 under high laser power [J]. Mater. Today, 2020, 30: 784
8 Li L L , Wang Z B , He S Y , et al . Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion [J]. J. Mater. Sci. Technol., 2021, 89: 158
9 Guo P F , Lin X , Li J Q , et al . Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections [J]. Corros. Sci., 2018, 132: 79
10 Hamza H M , Deen K M , Khaliq A , et al . Microstructural, corrosion and mechanical properties of additively manufactured alloys: A review [J]. Crit. Rev. Solid State Mater. Sci., 2022, 47: 46
11 Firoz R , Basantia S K , Khutia N , et al . Effect of microstructural constituents on mechanical properties and fracture toughness of Inconel 718 with anomalous deformation behavior at 650oC [J]. J. Alloys Compd., 2020, 845: 156276
12 Hosseini E , Popovich V A . A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
13 Li H X , Feng S N , Li J H , et al . Effect of heat treatment on the δ phase distribution and corrosion resistance of selective laser melting manufactured Inconel 718 superalloy [J]. Mater. Corros., 2018, 69: 1350
14 Raj B A , Jappes J T W , Khan M A , et al . Studies on heat treatment and electrochemical behaviour of 3D printed DMLS processed nickel-based superalloy [J]. Appl. Phys. , 2019, 125A: 722
15 You X G , Tan Y , Zhao L H , et al . Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy [J]. J. Alloys Compd., 2018, 741: 792
16 Tang Y B , Shen X W , Qiao Y X , et al . Corrosion behavior of a selective laser melted Inconel 718 alloy in a 3.5 wt.% NaCl solution [J]. J. Mater. Eng. Perform., 2021, 30: 5506
17 Zhang L N , Ojo O A . Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy [J]. J. Alloys Compd., 2020, 829: 154455
18 Luo S C , Huang W P , Yang H H , et al . Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
19 Qin T , Lin X , Yu J , et al . Performance of different microstructure on electrochemical behaviors of laser solid formed Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2021, 185: 109392
20 Stefanoni M , Angst U , Elsener B . Local electrochemistry of reinforcement steel-distribution of open circuit and pitting potentials on steels with different surface condition [J]. Corros. Sci., 2015, 98: 610
21 Wang D P , Shen J W , Chen Z , et al . Relationship of corrosion behavior between single-phase equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn alloys and their constituents in NaCl solution [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1574
22 Zhu M , Zhang Q , Yuan Y F , et al . Passivation behavior of 2507 super duplex stainless steel in simulated concrete pore solution [J]. J. Mater. Eng. Perform., 2020, 29: 3141
23 Song Q N , Tong Y , Li H L , et al . Corrosion and cavitation erosion resistance enhancement of cast Ni-Al bronze by laser surface melting [J]. J. Iron Steel Res. Int., 2021, doi: 10.1007/s42243-021-00674-3
24 Liu L , Li Y , Wang F H . Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl [J]. Electrochim. Acta, 2007, 52: 7193
25 Fattah-alhosseini A , Vafaeian S . Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements [J]. J. Alloys Compd., 2015, 639: 301
26 Kong D C , Dong C F , Ni X Q , et al . The passivity of selective laser melted 316L stainless steel [J]. Appl. Surf. Sci., 2020, 504: 144495
27 Liu L , Li Y , Wang F H . Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta, 2007, 52: 2392
28 Szklarska-Smialowska Z . Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
29 Qiao Y X , Wang X Y , Yang L L , et al . Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107: 197
30 Nascimento C B , Donatus U , Ríos C T , et al . Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution [J]. J. Mater. Res. Technol., 2020, 9: 13879
31 Feng Z C , Cheng X Q , Dong C F , et al . Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
32 Hakiki N E , Montemor M F , Ferreira M G S , et al . Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel [J]. Corros. Sci., 2000, 42: 687
33 Yao J Z , Macdonald D D , Dong C F . Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods [J]. Corros. Sci., 2019, 146: 221
34 Bakare M S , Voisey K T , Roe M J , et al . X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625 [J]. Appl. Surf. Sci., 2010, 257: 786
35 Shi P , Lv X Z , Zhang J , et al . Corrosion behavior of nickel-based superalloy CMSX-4 in 3.5wt.% NaCl solution [J]. J. Guangxi. Acad. Sci., 2020, 36: 427
35 史 鹏, 吕仙姿, 张 杰 等 .镍基合金CMSX-4在3.5 wt.% NaCl溶液中的腐蚀行为 [J]. 广西科学院学报, 2020, 36: 427
36 Cwalina K L , Demarest C R , Gerard A Y , et al . Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion [J]. Curr. Opin. Solid State Mater. Sci., 2019, 23: 129
37 Cui Z Y , Chen S S , Dou Y P , et al . Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
38 Luo H , Dong C F , Li X G , et al . The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta., 2012, 64: 211
39 Kong D S , Chen S H , Wang C , et al . A study of the passive films on chromium by capacitance measurement [J]. Corros. Sci., 2003, 45: 747
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[6] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[9] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[12] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[13] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[14] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[15] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.