Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 295-310    DOI: 10.11900/0412.1961.2021.00119
  综述 本期目录 | 过刊浏览 |
MAX 相表面金属晶须自发生长现象的研究现状与展望
田志华1, 张培根1(), 刘玉爽2, 陆成杰1, 丁健翔3, 孙正明1()
1.东南大学 材料科学与工程学院 江苏省先进金属材料高技术研究重点实验室 南京 211189
2.南京工程学院 材料科学与工程学院 江苏省先进结构材料与应用技术重点实验室 南京 211167
3.安徽工业大学 材料科学与工程学院 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002
Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates
TIAN Zhihua1, ZHANG Peigen1(), LIU Yushuang2, LU Chengjie1, DING Jianxiang3, SUN Zhengming1()
1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
3.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
引用本文:

田志华, 张培根, 刘玉爽, 陆成杰, 丁健翔, 孙正明. MAX 相表面金属晶须自发生长现象的研究现状与展望[J]. 金属学报, 2022, 58(3): 295-310.
Zhihua TIAN, Peigen ZHANG, Yushuang LIU, Chengjie LU, Jianxiang DING, Zhengming SUN. Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates[J]. Acta Metall Sin, 2022, 58(3): 295-310.

全文: PDF(2952 KB)   HTML
摘要: 

以Sn晶须为代表的金属晶须自发生长现象由来已久,电子工业深受其害,但铅添加剂的使用使相关研究一度沉寂。新世纪伊始,“铅毒”迫使人们开发无铅化Sn晶须抑制策略。然而,复杂的影响因素阻碍了对金属晶须自发生长现象的全面认识。近年来,诸多研究表明MAX相基体具有与金属基体相似的晶须自发生长现象,并且晶须的再现性好、孕育期短、生长速率快、种类丰富。因此,将MAX相作为研究晶须自发生长的新平台,有望加快人们对这一普遍现象的全面理解。本文以金属晶须自发生长为背景,结合本课题组相关研究,综述MAX相表面金属晶须自发生长研究工作,从晶须生长的2个基本过程(形核与长大)分析,阐述自发生长机制,并展望MAX相上晶须自发生长的研究方向与潜在应用。

关键词 金属晶须自发生长MAX抑制策略无铅化可靠性    
Abstract

The spontaneous growth of metal whiskers, most notably tin whiskers, has a long history, and the electronics industry has suffered greatly as a result. Pb additive had previously deactivated research on the whiskering phenomenon, but the toxicity of lead alarmed people at the beginning of the century. Nevertheless, intricate conditions involved in the whisker growth research and the multifarious phenomena have hampered the research on this topic; therefore, a comprehensive understanding of the metal whisker growth has been absent. A related whiskering phenomenon on MAX phase substrates has been investigated in recent years, and the occurrence of MAX phase, compared with the whisker growth on metallic substrates, exhibits good repeatability, a short incubation period, a fast growth rate, and rich composition varieties. Therefore, the MAX phase as a new platform of whisker growth investigation is expected to speed up the understanding of the mechanisms related to this phenomenon. Regarding the general background of spontaneous metal whisker growth and our group's current findings, this review summarizes the current status of spontaneous metal whisker growth on MAX phase substrates, discusses and describes the growth mechanism from the two main processes of crystal growth (nucleation and growth), and concludes with a perspective on future research and potential applications of spontaneous whisker growth on the MAX phase substrates.

Key wordsmetal whisker    spontaneous growth    MAX phase    mitigation strategy    lead-free    reliability
收稿日期: 2021-03-23     
ZTFLH:  TQ174  
基金资助:国家重点研发计划项目(2017YFE0301403);国家自然科学基金项目(51731004);江苏省自然科学基金项目(BK20201283)
作者简介: 田志华,男,1995年生,博士生
图1  MAX相的层状晶体结构Color online(a) 211 phase (b) 312 phase (c) 413 phase
图2  目前已合成MAX相中各组元在元素周期表中的分布[55]
图3  Cr2GaN表面生长的Ga晶须[6](a) all whiskers are pure single-crystalline Ga(b) spiral whisker(c) winding whisker(d) marked increase in density and lengths of whiskers after six months
图4  Cr2GaC中Ga晶须或Ga球被基体“吸回”并形成纳米带[81](a) Ga whiskers appear (b) Ga whiskers disappear(c) Ga spheres appear (d) Ga spheres disappear
图5  晶须生长的氧化-压应力机制及有限元模拟结果[12](a) periodic hexagonal arrangement of Al grains (gray) surrounded by a thin oxide layer (not shown) and Sn (white)(b) plane strain finite element mesh for the analysis of the effect of oxide expansion (SM—soft metal)(c) contours of out-of-plane stress in Sn in MPa
图6  解理面“催化”机制描述的Ga晶须形核示意图[85]
图7  Ti2SnC/120Sn体系中Sn晶须生长的同位素研究结果[82](a) relative proportion of 118Sn to 120Sn under different conditions(b) scheme illustrating the contribution from lattice and excess Sn atoms to whiskers
图8  Sn晶须与Ti2SnC基体界面的微观结构[90](a) TEM image of the interface, and the insets show the corresponding SAED patterns(b) magnified view of the white rectangle area in Fig.8a(c) HRTEM images of the interface, where d represents interplanar spacing, dˉ1 and dˉ2 are the average interplanar spacings of the transition layer in Areas 1 and 2, respectively
图9  Sn晶须在真空、空气气氛下交替培养时的形貌图[89](a) whisker bottom with prismatic features (in vacuum)(b) bottom becomes streaked and the prisms move upwards (in air)
图10  真空环境培养的Sn晶须及对应的形貌模拟结果[90](a, b) quadrangular Sn whisker (c, d) hexagonal Sn whisker
1 NASA . Tin whisker (and other metal whisker) homepage [EB/OL].
2 Franks J . Growth of whiskers in the solid phase [J]. Acta Metall., 1958, 6: 103
3 Zhao Z S , Xian A P . Mechanisms and questions of tin whisker growth [J]. Chin. J. Nonferrous Met., 2012, 22: 2267
3 赵子寿, 冼爱平 . 锡晶须生长机理研究的现状与问题 [J]. 中国有色金属学报, 2012, 22: 2267
4 Zhang P G , Zhang Y M , Sun Z M . Spontaneous growth of metal whiskers on surfaces of solids: A review [J]. J. Mater. Sci. Technol., 2015, 31: 675
5 Liu M , Xian A P . TEM observation of tin whisker [J]. Sci. China Technol. Sci., 2011, 54: 1546
6 Barsoum M W , Farber L . Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN [J]. Science, 1999, 284: 937
7 El-Raghy T , Barsoum M W . Growing metallic whiskers: Alternative interpretation [J]. Science, 1999, 285: 1355
8 Hoffman E N , Barsoum M W , Wang W , et al . On the spontaneous growth of soft metallic whiskers [A]. Proceedings of the 51st IEEE Holm Conference on Electrical Contacts [C]. Chicago, IL, USA: IEEE, 2005: 121
9 Boettinger W J , Johnson C E , Bendersky L A , et al . Whisker and hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits [J]. Acta Mater., 2005, 53: 5033
10 Lin W C , Tseng T H , Liu W , et al . Effect of Sn film grain size and thickness on kinetics of spontaneous Sn whisker growth [J]. JOM, 2019, 71: 3041
11 Majumdar B S , Dutta I , Bhassyvasantha S , et al . Recent advances in mitigation of whiskers from electroplated tin [J]. JOM, 2020, 72: 906
12 Barsoum M W , Hoffman E N , Doherty R D , et al . Driving force and mechanism for spontaneous metal whisker formation [J]. Phys. Rev. Lett., 2004, 93: 206104
13 Shim W , Ham J , Lee K I , et al . On-film formation of Bi nanowires with extraordinary electron mobility [J]. Nano Lett., 2009, 9: 18
14 Cheng Y T , Weiner A M , Wong C A , et al . Stress-induced growth of bismuth nanowires [J]. Appl. Phys. Lett., 2002, 81: 3248
15 Sun Z M , Hashimoto H , Barsoum M W . On the effect of environment on spontaneous growth of lead whiskers from commercial brasses at room temperature [J]. Acta Mater., 2007, 55: 3387
16 Ellis W C . Morphology of whisker crystals of tin, zinc, and cadmium grown spontaneously from solid [J]. Trans. Metall. Soc. AIME, 1966, 236: 872
17 Davis J H . Growth of thallium whiskers [J]. J. Appl. Phys., 1968, 39: 5811
18 Tohmyoh H , Yasuda M , Saka M . Controlling Ag whisker growth using very thin metallic films [J]. Scr. Mater., 2010, 63: 289
19 Kosinova A , Wang D , Schaaf P , et al . Whiskers growth in thin passivated Au films [J]. Acta Mater., 2018, 149: 154
20 Saka M , Yamaya F , Tohmyoh H . Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films [J]. Scr. Mater., 2007, 56: 1031
21 Horváth B , Illés B , Shinohara T , et al . Copper-oxide whisker growth on tin-copper alloy coatings caused by the corrosion of Cu6Sn5 intermetallics [J]. J. Mater. Sci., 2013, 48: 8052
22 Matsumoto T , Harries D , Langenhorst F , et al . Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering [J]. Nat. Commun., 2020, 11: 1117
23 Illés B , Skwarek A , Ratajczak J , et al . The influence of the crystallographic structure of the intermetallic grains on tin whisker growth [J]. J. Alloys Compd., 2019, 785: 774
24 Zhang Z H , Wei C W , Han J J , et al . Growth evolution and formation mechanism of η′-Cu6Sn5 whiskers on η-Cu6Sn5 intermetallics during room-temperature ageing [J]. Acta Mater., 2020, 183: 340
25 Hao H , Li G D , Shi Y W , et al . Study of rapid growth of tin whisker accelerated by rare earth Ce [J]. Rare Met. Mater. Eng., 2009, 38: 866
25 郝 虎, 李广东, 史耀武 等 . 稀土Ce加速Sn晶须生长的研究 [J]. 稀有金属材料与工程, 2009, 38: 866
26 Li C F , Liu Z Q . Microstructure and growth mechanism of tin whiskers on RESn3 compounds [J]. Acta Mater., 2013, 61: 589
27 Liu Y S , Zhang P G , Yang L , et al . Spontaneous Ga whisker formation on FeGa3 [J]. Prog. Nat. Sci. Mater., 2018, 28: 569
28 Cobb H L . Cadmium whiskers [J]. Mon. Rev. Am. Electroplaters Soc., 1946, 33: 28
29 Compton K G , Mendizza A , Arnold S M . Filamentary growths on metal surfaces—“Whiskers” [J]. Corrosion, 1951, 7: 327
30 Chason E , Jadhav N , Pei F , et al . Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms [J]. Prog. Surf. Sci., 2013, 88: 103
31 George E , Pecht M . Tin whisker analysis of an automotive engine control unit [J]. Microelectron. Reliab., 2014, 54: 214
32 Mathew S , Osterman M , Shibutani T , et al . Tin whiskers: How to mitigate and manage the risks [A]. Proceedings of 2007 International Symposium on High Density Packaging and Microsystem Integration [C]. Shanghai, China: IEEE, 2007: 1
33 Li Y C , Sun M L , Ren S R , et al . The influence of non-uniform copper oxide layer on tin whisker growth and tin whisker growth behavior in SnAg microbumps with small diameter [J]. Mater. Lett., 2020, 258: 126773
34 NASA . Metal whisker photo gallery [EB/OL].
35 NASA . Whisker failures [EB/OL].
36 Arnold S M . The growth and properties of metal whiskers [A]. Proceedings of the 43rd Annual Convention of the American Electroplaters Society [C]. Washington, 1956: 26
37 Tu K N , Gusak A M , Li M . Physics and materials challenges for lead-free solders [J]. J. Appl. Phys., 2003, 93: 1335
38 Ruan Y , Ji X Q , Wen M , et al . Research progress of lead contamination detection technology in food [J]. Guizhou J. Anim. Husb. Vet. Med., 2012, 36(5): 12
38 阮 涌, 嵇辛勤, 文 明 等 . 食品中铅污染检测技术研究进展 [J]. 贵州畜牧兽医, 2012, 36(5): 12
39 Shangguan D K , translated by Liu J Y , Sun P . Lead-free Solder Interconnect Reliability [M]. Beijing: Publishing House of Electronics Industry, 2008: 352
39 上官东凯著, 刘建影, 孙 鹏 译. 无铅焊料互联及可靠性 [M]. 北京: 电子工业出版社, 2008: 352
40 Jagtap P , Chakraborty A , Eisenlohr P , et al . Identification of whisker grain in Sn coatings by analyzing crystallographic micro-texture using electron back-scatter diffraction [J]. Acta Mater., 2017, 134: 346
41 Meschter S J , Saha S K . Process for mitigation of whisker growth on a metallic substrate [P]. US Pat, 10907030, 2020
42 Liu S H , Ma L M , Shu Y T , et al . Growth behavior of whiskers in Sn-based lead-free solders [J]. Rare Met. Mater. Eng., 2015, 44: 2868
42 刘思涵, 马立民, 舒雨田 等 . Sn基无铅钎料晶须生长行为的研究 [J]. 稀有金属材料与工程, 2015, 44: 2868
43 Peach M O . Mechanism of growth of whiskers on cadmium [J]. J. Appl. Phys., 1952, 23: 1401
44 Eshelby J D . A tentative theory of metallic whisker growth [J]. Phys. Rev., 1953: 91: 755
45 Ellis W C , Gibbons D F , Treuning R C . Growth of Metal Whiskers from the Solid, Growth and Perfection of Crystals [M]. New York: John Wiley & Sons, 1958: 102
46 Vianco P T , Cummings D P , Kotula P G , et al . Mitigation of long whisker growth based upon the dynamic recrystallization mechanism [J]. J. Electron. Mater., 2019, 49: 888
47 Tu K N . Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions [J]. Phys. Rev., 1994, 49B: 2030
48 Howard H P , Cheng J , Vianco P T , et al . Interface flow mechanism for tin whisker growth [J]. Acta Mater., 2011, 59: 1957
49 Glazunova V K . A study of the influence of certain factors on the growth of filamentary tin crystals [J]. Kristallografiya, 1962, 7: 761
50 Shibutani T , Yu Q , Yamashita T , et al . Stress-induced tin whisker initiation under contact loading [J]. IEEE Trans. Electron. Packag. Manuf., 2006, 29: 259
51 Jagtap P , Jain N , Chason E . Whisker growth under a controlled driving force: Pressure induced whisker nucleation and growth [J]. Scr. Mater., 2020, 182: 43
52 Liu Y S . Mechanisms behind the spontaneous A-site metal whisker gtowth on MAX phases [D]. Nanjing: Southeast University, 2019
52 刘玉爽 . MAX相中A位金属晶须自发生长机理研究 [D]. 南京: 东南大学, 2019
53 Zhang P , Liu Y , Ding J , et al . Controllable growth of Ga wires from Cr2GaC-Ga and its mechanism [J]. Physica, 2015, 475B: 90
54 Barsoum M W . MAX Phases: Properties of Machinable Ternary Carbides and Nitrides [M]. Weinheim: John Wiley & Sons, 2013: 1
55 Sokol M , Natu V , Kota S , et al . On the chemical diversity of the MAX phases [J]. Trend. Chem., 2019, 1: 210
56 Sun Z M . Progress in research and development on MAX phases: A family of layered ternary compounds [J]. Inter. Mater. Rev., 2011, 56: 143
57 Magnuson M , Mattesini M . Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory [J]. Thin Solid Films, 2017, 621: 108
58 Jeitschko W , Nowotny H , Benesovsky F , et al . Die H-phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC [J]. Monatsh. Chem., 1963, 94: 1201
59 Barsoum M W , Farber L , Levin I , et al . High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited [J]. J. Am. Ceram. Soc., 1999, 82: 2545
60 Procopio A T , Barsoum M W , El-Raghy T . Characterization of Ti4AlN3 [J]. Metall. Mater. Trans., 2000, 31A: 333
61 Barsoum M W , El-Raghy T . Synthesis and characterization of a remarkable ceramic: Ti3SiC2 [J]. J. Am. Ceram. Soc., 1996, 79: 1953
62 Barsoum M W . The MN + 1 AXN phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
63 Lin Z J , Zhuo M J , Zhou Y C , et al . Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides [J]. J. Am. Ceram. Soc., 2006, 89: 3765
64 Zheng L Y , Wang J M , Lu X P , et al . (Ti0.5Nb0.5)5AlC4: A new-layered compound belonging to MAX phases [J]. J. Am. Ceram. Soc., 2010, 93: 3068
65 Palmquist J P , Li S , Persson P O Å , et al . Mn + 1 AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations [J]. Phys. Rev., 2004, 70B: 165401
66 Naguib M , Kurtoglu M , Presser V , et al . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater., 2011, 23: 4248
67 Verger L , Xu C , Natu V , et al . Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides [J]. Curr. Opin. Solid State Mater. Sci., 2019, 23: 149
68 Verger L , Natu V , Carey M , et al . MXenes: An introduction of their synthesis, select properties, and applications [J]. Trend. Chem., 2019, 1: 656
69 Li M , Huang Q . Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes [J]. J. Inorg. Mater., 2020, 35: 1
69 李 勉, 黄 庆 . 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望 [J]. 无机材料学报, 2020, 35: 1
70 Sun Z M , Hashimoto H , Tian W B , et al . Synthesis of the MAX phases by pulse discharge sintering [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 704
71 Li M , Li Y B , Luo K , et al . Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach [J]. J. Inorg. Mater., 2019, 34: 60
71 李 勉, 李友兵, 罗 侃 等 . 基于A位元素置换策略合成新型MAX相材料Ti3ZnC2 [J]. 无机材料学报, 2019, 34: 60
72 Whittle K R , Blackford M G , Aughterson R D , et al . Radiation tolerance of Mn + 1 AXn phases, Ti3AlC2 and Ti3SiC2 [J]. Acta Mater., 2010, 58: 4362
73 Ding J X , Tian W B , Wang D D , et al . Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging [J]. J. Alloys Compd., 2019, 785: 1086
74 Wu J Y , Zhou Y C , Wang J Y . Tribological behavior of Ti2SnC particulate reinforced copper matrix composites [J]. Mater. Sci. Eng., 2006, A422: 266
75 Shahzad F , Alhabeb M , Hatter C B , et al . Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353: 1137
76 Ghidiu M , Lukatskaya M R , Zhao M Q , et al . Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance [J]. Nature, 2014, 516: 78
77 Kamysbayev V , Filatov A S , Hu H C , et al . Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes [J]. Science, 2020, 369: 979
78 Liu Y , Zhang P , Ling C , et al . Spontaneous Sn whisker formation on Ti2SnC [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 5788
79 Zhang H B , Zhang J , Zhou Y C , et al . Synthesis of AlN nanowires by nitridation of Ti3Si0.9Al0.1C2 solid solution [J]. J. Mater. Res., 2007, 22: 561
80 Sun Z M , Gupta S , Ye H , et al . Spontaneous growth of freestanding Ga nanoribbons from Cr2GaC surfaces [J]. J. Mater. Res., 2005, 20: 2618
81 Sun Z M , Barsoum M W . Alternate mechanism for the spontaneous formation of freestanding Ga nanoribbons on Cr2GaC surfaces [J]. J. Mater. Res., 2006, 21: 1629
82 Lu C J , Liu Y S , Fang J , et al . Isotope study reveals atomic motion mechanism for the formation of metal whiskers in MAX phase [J]. Acta Mater., 2021, 203: 116475
83 Zhang Y , Lu C J , Liu Y S , et al . The effect of Bi addition on the formation of metal whiskers in Ti2SnC/Sn-xBi system [J]. Vacuum, 2020, 182: 109764
84 Chuang T H . Rapid whisker growth on the surface of Sn-3Ag-0.5Cu-1.0Ce solder joints [J]. Scr. Mater., 2006, 55: 983
85 Zhang P , Shen L W , Ouyang J , et al . Room temperature mushrooming of gallium wires and its growth mechanism [J]. J. Alloys Compd., 2015, 619: 488
86 Liu Y , Zhang P , Zhang Y M , et al . Spontaneous growth of Sn whiskers and a new formation mechanism [J]. Mater. Lett., 2016, 178: 111
87 Ali M S , Rayhan M A , Ali M A , et al . New MAX phase compound Mo2TiAlC2: First-principles study [J]. J. Sci. Res., 2016, 8: 109
88 Sun Z M , Barsoum M W , Zhang Y M , et al . On equilibrium Ga intergranular films in Cr2GaC [J]. Mater. Res. Lett., 2013, 1: 109
89 Liu Y S , Zhang P G , Yu J , et al . Confining effect of oxide film on tin whisker growth [J]. J. Mater. Sci. Technol., 2019, 35: 1735
90 Liu Y S , Lu C J , Zhang P G , et al . Mechanisms behind the spontaneous growth of tin whiskers on the Ti2SnC ceramics [J]. Acta Mater., 2020, 185: 433
91 Liao T , Wang J Y , Zhou Y C . Ab initio modeling of the formation and migration of monovacancies in Ti2AlC [J]. Scr. Mater., 2008, 59: 854
92 Wang S , Cheng J , Zhu S Y , et al . A novel route to prepare a Ti3SnC2/Al2O3 composite [J]. Scr. Mater., 2017, 131: 80
93 Liu B , Wang J Y , Zhang J , et al . Theoretical investigation of A-element atom diffusion in Ti2 AC (A = Sn, Ga, Cd, In, and Pb) [J]. Appl. Phys. Lett., 2009, 94: 181906
94 Zhang J , Liu B , Wang J Y , et al . Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations [J]. J. Mater. Res., 2012, 24: 39
95 Chen K M , Wilcox G D . Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits [J]. Phys. Rev. Lett., 2005, 94: 066104
96 Chason E , Pei F , Jain N , et al . Studying the effect of grain size on whisker nucleation and growth kinetics using thermal strain [J]. J. Electron. Mater., 2019, 48: 17
97 Tang J W . The influence mechanism of alloying elements on whisker growth from Ti2SnC/Sn composite system [D]. Nanjing: Southeast University, 2020
97 唐静雯 . 合金元素对Ti2SnC/Sn复合体系中Sn晶须生长行为的影响机制 [D]. 南京: 东南大学, 2020
98 Bramfitt B L . The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Mater. Trans., 1970, 1B: 1987
99 Tang J W , Zhang P G , Liu Y S , et al . Selective growth of tin whiskers from its alloys on Ti2SnC [J]. J. Mater. Sci. Technol., 2020, 54: 206
100 Liu Y S , Lu C J , Zhang Y , et al . Effect of cultivation conditions on tin whisker growth on Ti2SnC [J]. J. Electron. Mater., 2021, 50: 1083
101 Xian A P , Liu M . Observations of continuous tin whisker growth in NdSn3 intermetallic compound [J]. J. Mater. Res., 2009, 24: 2775
102 Vasko A C , Warrell G R , Parsai E I , et al . Electron beam induced growth of tin whiskers [J]. J. Appl. Phys., 2015, 118: 125301
103 Oudat O , Arora V , Parsai E I , et al . Gamma- and X-ray accelerated tin whisker development [J]. J. Phys., 2020, 53D: 495305
104 Zhang P G , Tang J W , Sun Z M , et al . Purification method for low-melting-point metal [P]. Chin Pat, 201810677352.9, 2018
104 张培根, 唐静雯, 孙正明 等 . 一种低熔点金属提纯方法 [P]. 中国专利, 201810677352.9, 2018)
105 Zhang P G , Tang J W , Sun Z M , et al . Preparation method of dimension-control GaO nanometer tubes [P]. Chin Pat, 201910071310.5, 2019
105 张培根, 唐静雯, 孙正明 等 . 一种尺寸可控GaO纳米管的制备方法 [P]. 中国专利, 201910071310.5, 2019)
[1] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[2] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[3] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[4] 杭春进,田艳红,赵鑫,王春青. 混装BGA器件高温老化实验焊点微观组织研究[J]. 金属学报, 2013, 49(7): 831-837.
[5] 赵杰 李东明 方园园. T91/P91钢持久性能的统计分析及可靠性预测[J]. 金属学报, 2009, 45(7): 835-839.
[6] 丁颖; 王春青; 田艳红 . 通孔元件焊点的抗热疲劳性能预测 I. 焊点抗热疲劳能力的实验研究[J]. 金属学报, 2003, 39(8): 879-884 .
[7] 韩玉梅;韩恩厚;柯伟. 多级载荷作用下的疲劳寿命可靠性计算方法[J]. 金属学报, 1994, 30(4): 170-175.