|
|
MAX 相表面金属晶须自发生长现象的研究现状与展望 |
田志华1, 张培根1( ), 刘玉爽2, 陆成杰1, 丁健翔3, 孙正明1( ) |
1.东南大学 材料科学与工程学院 江苏省先进金属材料高技术研究重点实验室 南京 211189 2.南京工程学院 材料科学与工程学院 江苏省先进结构材料与应用技术重点实验室 南京 211167 3.安徽工业大学 材料科学与工程学院 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002 |
|
Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates |
TIAN Zhihua1, ZHANG Peigen1( ), LIU Yushuang2, LU Chengjie1, DING Jianxiang3, SUN Zhengming1( ) |
1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China 3.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China |
引用本文:
田志华, 张培根, 刘玉爽, 陆成杰, 丁健翔, 孙正明. MAX 相表面金属晶须自发生长现象的研究现状与展望[J]. 金属学报, 2022, 58(3): 295-310.
Zhihua TIAN,
Peigen ZHANG,
Yushuang LIU,
Chengjie LU,
Jianxiang DING,
Zhengming SUN.
Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates[J]. Acta Metall Sin, 2022, 58(3): 295-310.
1 |
NASA . Tin whisker (and other metal whisker) homepage [EB/OL].
|
2 |
Franks J . Growth of whiskers in the solid phase [J]. Acta Metall., 1958, 6: 103
|
3 |
Zhao Z S , Xian A P . Mechanisms and questions of tin whisker growth [J]. Chin. J. Nonferrous Met., 2012, 22: 2267
|
3 |
赵子寿, 冼爱平 . 锡晶须生长机理研究的现状与问题 [J]. 中国有色金属学报, 2012, 22: 2267
|
4 |
Zhang P G , Zhang Y M , Sun Z M . Spontaneous growth of metal whiskers on surfaces of solids: A review [J]. J. Mater. Sci. Technol., 2015, 31: 675
|
5 |
Liu M , Xian A P . TEM observation of tin whisker [J]. Sci. China Technol. Sci., 2011, 54: 1546
|
6 |
Barsoum M W , Farber L . Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN [J]. Science, 1999, 284: 937
|
7 |
El-Raghy T , Barsoum M W . Growing metallic whiskers: Alternative interpretation [J]. Science, 1999, 285: 1355
|
8 |
Hoffman E N , Barsoum M W , Wang W , et al . On the spontaneous growth of soft metallic whiskers [A]. Proceedings of the 51st IEEE Holm Conference on Electrical Contacts [C]. Chicago, IL, USA: IEEE, 2005: 121
|
9 |
Boettinger W J , Johnson C E , Bendersky L A , et al . Whisker and hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits [J]. Acta Mater., 2005, 53: 5033
|
10 |
Lin W C , Tseng T H , Liu W , et al . Effect of Sn film grain size and thickness on kinetics of spontaneous Sn whisker growth [J]. JOM, 2019, 71: 3041
|
11 |
Majumdar B S , Dutta I , Bhassyvasantha S , et al . Recent advances in mitigation of whiskers from electroplated tin [J]. JOM, 2020, 72: 906
|
12 |
Barsoum M W , Hoffman E N , Doherty R D , et al . Driving force and mechanism for spontaneous metal whisker formation [J]. Phys. Rev. Lett., 2004, 93: 206104
|
13 |
Shim W , Ham J , Lee K I , et al . On-film formation of Bi nanowires with extraordinary electron mobility [J]. Nano Lett., 2009, 9: 18
|
14 |
Cheng Y T , Weiner A M , Wong C A , et al . Stress-induced growth of bismuth nanowires [J]. Appl. Phys. Lett., 2002, 81: 3248
|
15 |
Sun Z M , Hashimoto H , Barsoum M W . On the effect of environment on spontaneous growth of lead whiskers from commercial brasses at room temperature [J]. Acta Mater., 2007, 55: 3387
|
16 |
Ellis W C . Morphology of whisker crystals of tin, zinc, and cadmium grown spontaneously from solid [J]. Trans. Metall. Soc. AIME, 1966, 236: 872
|
17 |
Davis J H . Growth of thallium whiskers [J]. J. Appl. Phys., 1968, 39: 5811
|
18 |
Tohmyoh H , Yasuda M , Saka M . Controlling Ag whisker growth using very thin metallic films [J]. Scr. Mater., 2010, 63: 289
|
19 |
Kosinova A , Wang D , Schaaf P , et al . Whiskers growth in thin passivated Au films [J]. Acta Mater., 2018, 149: 154
|
20 |
Saka M , Yamaya F , Tohmyoh H . Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films [J]. Scr. Mater., 2007, 56: 1031
|
21 |
Horváth B , Illés B , Shinohara T , et al . Copper-oxide whisker growth on tin-copper alloy coatings caused by the corrosion of Cu6Sn5 intermetallics [J]. J. Mater. Sci., 2013, 48: 8052
|
22 |
Matsumoto T , Harries D , Langenhorst F , et al . Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering [J]. Nat. Commun., 2020, 11: 1117
|
23 |
Illés B , Skwarek A , Ratajczak J , et al . The influence of the crystallographic structure of the intermetallic grains on tin whisker growth [J]. J. Alloys Compd., 2019, 785: 774
|
24 |
Zhang Z H , Wei C W , Han J J , et al . Growth evolution and formation mechanism of η′-Cu6Sn5 whiskers on η-Cu6Sn5 intermetallics during room-temperature ageing [J]. Acta Mater., 2020, 183: 340
|
25 |
Hao H , Li G D , Shi Y W , et al . Study of rapid growth of tin whisker accelerated by rare earth Ce [J]. Rare Met. Mater. Eng., 2009, 38: 866
|
25 |
郝 虎, 李广东, 史耀武 等 . 稀土Ce加速Sn晶须生长的研究 [J]. 稀有金属材料与工程, 2009, 38: 866
|
26 |
Li C F , Liu Z Q . Microstructure and growth mechanism of tin whiskers on RESn3 compounds [J]. Acta Mater., 2013, 61: 589
|
27 |
Liu Y S , Zhang P G , Yang L , et al . Spontaneous Ga whisker formation on FeGa3 [J]. Prog. Nat. Sci. Mater., 2018, 28: 569
|
28 |
Cobb H L . Cadmium whiskers [J]. Mon. Rev. Am. Electroplaters Soc., 1946, 33: 28
|
29 |
Compton K G , Mendizza A , Arnold S M . Filamentary growths on metal surfaces—“Whiskers” [J]. Corrosion, 1951, 7: 327
|
30 |
Chason E , Jadhav N , Pei F , et al . Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms [J]. Prog. Surf. Sci., 2013, 88: 103
|
31 |
George E , Pecht M . Tin whisker analysis of an automotive engine control unit [J]. Microelectron. Reliab., 2014, 54: 214
|
32 |
Mathew S , Osterman M , Shibutani T , et al . Tin whiskers: How to mitigate and manage the risks [A]. Proceedings of 2007 International Symposium on High Density Packaging and Microsystem Integration [C]. Shanghai, China: IEEE, 2007: 1
|
33 |
Li Y C , Sun M L , Ren S R , et al . The influence of non-uniform copper oxide layer on tin whisker growth and tin whisker growth behavior in SnAg microbumps with small diameter [J]. Mater. Lett., 2020, 258: 126773
|
34 |
NASA . Metal whisker photo gallery [EB/OL].
|
35 |
NASA . Whisker failures [EB/OL].
|
36 |
Arnold S M . The growth and properties of metal whiskers [A]. Proceedings of the 43rd Annual Convention of the American Electroplaters Society [C]. Washington, 1956: 26
|
37 |
Tu K N , Gusak A M , Li M . Physics and materials challenges for lead-free solders [J]. J. Appl. Phys., 2003, 93: 1335
|
38 |
Ruan Y , Ji X Q , Wen M , et al . Research progress of lead contamination detection technology in food [J]. Guizhou J. Anim. Husb. Vet. Med., 2012, 36(5): 12
|
38 |
阮 涌, 嵇辛勤, 文 明 等 . 食品中铅污染检测技术研究进展 [J]. 贵州畜牧兽医, 2012, 36(5): 12
|
39 |
Shangguan D K , translated by Liu J Y , Sun P . Lead-free Solder Interconnect Reliability [M]. Beijing: Publishing House of Electronics Industry, 2008: 352
|
39 |
上官东凯著, 刘建影, 孙 鹏 译. 无铅焊料互联及可靠性 [M]. 北京: 电子工业出版社, 2008: 352
|
40 |
Jagtap P , Chakraborty A , Eisenlohr P , et al . Identification of whisker grain in Sn coatings by analyzing crystallographic micro-texture using electron back-scatter diffraction [J]. Acta Mater., 2017, 134: 346
|
41 |
Meschter S J , Saha S K . Process for mitigation of whisker growth on a metallic substrate [P]. US Pat, 10907030, 2020
|
42 |
Liu S H , Ma L M , Shu Y T , et al . Growth behavior of whiskers in Sn-based lead-free solders [J]. Rare Met. Mater. Eng., 2015, 44: 2868
|
42 |
刘思涵, 马立民, 舒雨田 等 . Sn基无铅钎料晶须生长行为的研究 [J]. 稀有金属材料与工程, 2015, 44: 2868
|
43 |
Peach M O . Mechanism of growth of whiskers on cadmium [J]. J. Appl. Phys., 1952, 23: 1401
|
44 |
Eshelby J D . A tentative theory of metallic whisker growth [J]. Phys. Rev., 1953: 91: 755
|
45 |
Ellis W C , Gibbons D F , Treuning R C . Growth of Metal Whiskers from the Solid, Growth and Perfection of Crystals [M]. New York: John Wiley & Sons, 1958: 102
|
46 |
Vianco P T , Cummings D P , Kotula P G , et al . Mitigation of long whisker growth based upon the dynamic recrystallization mechanism [J]. J. Electron. Mater., 2019, 49: 888
|
47 |
Tu K N . Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions [J]. Phys. Rev., 1994, 49B: 2030
|
48 |
Howard H P , Cheng J , Vianco P T , et al . Interface flow mechanism for tin whisker growth [J]. Acta Mater., 2011, 59: 1957
|
49 |
Glazunova V K . A study of the influence of certain factors on the growth of filamentary tin crystals [J]. Kristallografiya, 1962, 7: 761
|
50 |
Shibutani T , Yu Q , Yamashita T , et al . Stress-induced tin whisker initiation under contact loading [J]. IEEE Trans. Electron. Packag. Manuf., 2006, 29: 259
|
51 |
Jagtap P , Jain N , Chason E . Whisker growth under a controlled driving force: Pressure induced whisker nucleation and growth [J]. Scr. Mater., 2020, 182: 43
|
52 |
Liu Y S . Mechanisms behind the spontaneous A-site metal whisker gtowth on MAX phases [D]. Nanjing: Southeast University, 2019
|
52 |
刘玉爽 . MAX相中A位金属晶须自发生长机理研究 [D]. 南京: 东南大学, 2019
|
53 |
Zhang P , Liu Y , Ding J , et al . Controllable growth of Ga wires from Cr2GaC-Ga and its mechanism [J]. Physica, 2015, 475B: 90
|
54 |
Barsoum M W . MAX Phases: Properties of Machinable Ternary Carbides and Nitrides [M]. Weinheim: John Wiley & Sons, 2013: 1
|
55 |
Sokol M , Natu V , Kota S , et al . On the chemical diversity of the MAX phases [J]. Trend. Chem., 2019, 1: 210
|
56 |
Sun Z M . Progress in research and development on MAX phases: A family of layered ternary compounds [J]. Inter. Mater. Rev., 2011, 56: 143
|
57 |
Magnuson M , Mattesini M . Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory [J]. Thin Solid Films, 2017, 621: 108
|
58 |
Jeitschko W , Nowotny H , Benesovsky F , et al . Die H-phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC [J]. Monatsh. Chem., 1963, 94: 1201
|
59 |
Barsoum M W , Farber L , Levin I , et al . High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited [J]. J. Am. Ceram. Soc., 1999, 82: 2545
|
60 |
Procopio A T , Barsoum M W , El-Raghy T . Characterization of Ti4AlN3 [J]. Metall. Mater. Trans., 2000, 31A: 333
|
61 |
Barsoum M W , El-Raghy T . Synthesis and characterization of a remarkable ceramic: Ti3SiC2 [J]. J. Am. Ceram. Soc., 1996, 79: 1953
|
62 |
Barsoum M W . The MN + 1 AXN phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
|
63 |
Lin Z J , Zhuo M J , Zhou Y C , et al . Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides [J]. J. Am. Ceram. Soc., 2006, 89: 3765
|
64 |
Zheng L Y , Wang J M , Lu X P , et al . (Ti0.5Nb0.5)5AlC4: A new-layered compound belonging to MAX phases [J]. J. Am. Ceram. Soc., 2010, 93: 3068
|
65 |
Palmquist J P , Li S , Persson P O Å , et al . Mn + 1 AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations [J]. Phys. Rev., 2004, 70B: 165401
|
66 |
Naguib M , Kurtoglu M , Presser V , et al . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater., 2011, 23: 4248
|
67 |
Verger L , Xu C , Natu V , et al . Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides [J]. Curr. Opin. Solid State Mater. Sci., 2019, 23: 149
|
68 |
Verger L , Natu V , Carey M , et al . MXenes: An introduction of their synthesis, select properties, and applications [J]. Trend. Chem., 2019, 1: 656
|
69 |
Li M , Huang Q . Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes [J]. J. Inorg. Mater., 2020, 35: 1
|
69 |
李 勉, 黄 庆 . 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望 [J]. 无机材料学报, 2020, 35: 1
|
70 |
Sun Z M , Hashimoto H , Tian W B , et al . Synthesis of the MAX phases by pulse discharge sintering [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 704
|
71 |
Li M , Li Y B , Luo K , et al . Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach [J]. J. Inorg. Mater., 2019, 34: 60
|
71 |
李 勉, 李友兵, 罗 侃 等 . 基于A位元素置换策略合成新型MAX相材料Ti3ZnC2 [J]. 无机材料学报, 2019, 34: 60
|
72 |
Whittle K R , Blackford M G , Aughterson R D , et al . Radiation tolerance of Mn + 1 AXn phases, Ti3AlC2 and Ti3SiC2 [J]. Acta Mater., 2010, 58: 4362
|
73 |
Ding J X , Tian W B , Wang D D , et al . Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging [J]. J. Alloys Compd., 2019, 785: 1086
|
74 |
Wu J Y , Zhou Y C , Wang J Y . Tribological behavior of Ti2SnC particulate reinforced copper matrix composites [J]. Mater. Sci. Eng., 2006, A422: 266
|
75 |
Shahzad F , Alhabeb M , Hatter C B , et al . Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353: 1137
|
76 |
Ghidiu M , Lukatskaya M R , Zhao M Q , et al . Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance [J]. Nature, 2014, 516: 78
|
77 |
Kamysbayev V , Filatov A S , Hu H C , et al . Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes [J]. Science, 2020, 369: 979
|
78 |
Liu Y , Zhang P , Ling C , et al . Spontaneous Sn whisker formation on Ti2SnC [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 5788
|
79 |
Zhang H B , Zhang J , Zhou Y C , et al . Synthesis of AlN nanowires by nitridation of Ti3Si0.9Al0.1C2 solid solution [J]. J. Mater. Res., 2007, 22: 561
|
80 |
Sun Z M , Gupta S , Ye H , et al . Spontaneous growth of freestanding Ga nanoribbons from Cr2GaC surfaces [J]. J. Mater. Res., 2005, 20: 2618
|
81 |
Sun Z M , Barsoum M W . Alternate mechanism for the spontaneous formation of freestanding Ga nanoribbons on Cr2GaC surfaces [J]. J. Mater. Res., 2006, 21: 1629
|
82 |
Lu C J , Liu Y S , Fang J , et al . Isotope study reveals atomic motion mechanism for the formation of metal whiskers in MAX phase [J]. Acta Mater., 2021, 203: 116475
|
83 |
Zhang Y , Lu C J , Liu Y S , et al . The effect of Bi addition on the formation of metal whiskers in Ti2SnC/Sn-xBi system [J]. Vacuum, 2020, 182: 109764
|
84 |
Chuang T H . Rapid whisker growth on the surface of Sn-3Ag-0.5Cu-1.0Ce solder joints [J]. Scr. Mater., 2006, 55: 983
|
85 |
Zhang P , Shen L W , Ouyang J , et al . Room temperature mushrooming of gallium wires and its growth mechanism [J]. J. Alloys Compd., 2015, 619: 488
|
86 |
Liu Y , Zhang P , Zhang Y M , et al . Spontaneous growth of Sn whiskers and a new formation mechanism [J]. Mater. Lett., 2016, 178: 111
|
87 |
Ali M S , Rayhan M A , Ali M A , et al . New MAX phase compound Mo2TiAlC2: First-principles study [J]. J. Sci. Res., 2016, 8: 109
|
88 |
Sun Z M , Barsoum M W , Zhang Y M , et al . On equilibrium Ga intergranular films in Cr2GaC [J]. Mater. Res. Lett., 2013, 1: 109
|
89 |
Liu Y S , Zhang P G , Yu J , et al . Confining effect of oxide film on tin whisker growth [J]. J. Mater. Sci. Technol., 2019, 35: 1735
|
90 |
Liu Y S , Lu C J , Zhang P G , et al . Mechanisms behind the spontaneous growth of tin whiskers on the Ti2SnC ceramics [J]. Acta Mater., 2020, 185: 433
|
91 |
Liao T , Wang J Y , Zhou Y C . Ab initio modeling of the formation and migration of monovacancies in Ti2AlC [J]. Scr. Mater., 2008, 59: 854
|
92 |
Wang S , Cheng J , Zhu S Y , et al . A novel route to prepare a Ti3SnC2/Al2O3 composite [J]. Scr. Mater., 2017, 131: 80
|
93 |
Liu B , Wang J Y , Zhang J , et al . Theoretical investigation of A-element atom diffusion in Ti2 AC (A = Sn, Ga, Cd, In, and Pb) [J]. Appl. Phys. Lett., 2009, 94: 181906
|
94 |
Zhang J , Liu B , Wang J Y , et al . Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations [J]. J. Mater. Res., 2012, 24: 39
|
95 |
Chen K M , Wilcox G D . Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits [J]. Phys. Rev. Lett., 2005, 94: 066104
|
96 |
Chason E , Pei F , Jain N , et al . Studying the effect of grain size on whisker nucleation and growth kinetics using thermal strain [J]. J. Electron. Mater., 2019, 48: 17
|
97 |
Tang J W . The influence mechanism of alloying elements on whisker growth from Ti2SnC/Sn composite system [D]. Nanjing: Southeast University, 2020
|
97 |
唐静雯 . 合金元素对Ti2SnC/Sn复合体系中Sn晶须生长行为的影响机制 [D]. 南京: 东南大学, 2020
|
98 |
Bramfitt B L . The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Mater. Trans., 1970, 1B: 1987
|
99 |
Tang J W , Zhang P G , Liu Y S , et al . Selective growth of tin whiskers from its alloys on Ti2SnC [J]. J. Mater. Sci. Technol., 2020, 54: 206
|
100 |
Liu Y S , Lu C J , Zhang Y , et al . Effect of cultivation conditions on tin whisker growth on Ti2SnC [J]. J. Electron. Mater., 2021, 50: 1083
|
101 |
Xian A P , Liu M . Observations of continuous tin whisker growth in NdSn3 intermetallic compound [J]. J. Mater. Res., 2009, 24: 2775
|
102 |
Vasko A C , Warrell G R , Parsai E I , et al . Electron beam induced growth of tin whiskers [J]. J. Appl. Phys., 2015, 118: 125301
|
103 |
Oudat O , Arora V , Parsai E I , et al . Gamma- and X-ray accelerated tin whisker development [J]. J. Phys., 2020, 53D: 495305
|
104 |
Zhang P G , Tang J W , Sun Z M , et al . Purification method for low-melting-point metal [P]. Chin Pat, 201810677352.9, 2018
|
104 |
张培根, 唐静雯, 孙正明 等 . 一种低熔点金属提纯方法 [P]. 中国专利, 201810677352.9, 2018)
|
105 |
Zhang P G , Tang J W , Sun Z M , et al . Preparation method of dimension-control GaO nanometer tubes [P]. Chin Pat, 201910071310.5, 2019
|
105 |
张培根, 唐静雯, 孙正明 等 . 一种尺寸可控GaO纳米管的制备方法 [P]. 中国专利, 201910071310.5, 2019)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|