|
|
非晶合金的回春行为 |
潘杰( ), 段峰辉 |
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Rejuvenation Behaviors in Metallic Glasses |
PAN Jie( ), DUAN Fenghui |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
Jie PAN,
Fenghui DUAN.
Rejuvenation Behaviors in Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 439-452.
1 |
Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
|
2 |
Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
|
3 |
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
|
4 |
Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
|
5 |
Greer A L. Metallic glasses...on the threshold [J]. Mater. Today, 2009, 12: 14
|
6 |
Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
|
7 |
Turnbull D, Cohen M H. Free-volume model of the amorphous phase: Glass transition [J]. J. Chem. Phys., 1961, 34: 120
|
8 |
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall., 1977, 25: 407
|
9 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
10 |
Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
|
11 |
Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
|
12 |
Parisi G, Sciortino F. Structural glasses: Flying to the bottom [J]. Nat. Mater., 2013, 12: 94
|
13 |
Tong Y, Iwashita T, Dmowski W, et al. Structural rejuvenation in bulk metallic glasses [J]. Acta Mater., 2015, 86: 240
|
14 |
Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
|
15 |
Hufnagel T C. Cryogenic rejuvenation [J]. Nat. Mater., 2015, 14: 867
|
16 |
Guo W, Saida J, Zhao M, et al. Non-thermal crystallization process in heterogeneous metallic glass upon deep cryogenic cycling treatment [J]. J. Mater. Sci., 2019, 54: 8778
|
17 |
Kang S J, Cao Q P, Liu J, et al. Intermediate structural state for maximizing the rejuvenation effect in metallic glass via thermo-cycling treatment [J]. J. Alloys Compd., 2019, 795: 493
|
18 |
Guo W, Saida J, Zhao M, et al. Unconspicuous rejuvenation of a Pd-based metallic glass upon deep cryogenic cycling treatment [J]. Mater. Sci. Eng., 2019, A759: 59
|
19 |
Sohrabi S, Ri M C, Jiang H Y, et al. Prominent role of chemical heterogeneity on cryogenic rejuvenation and thermomechanical properties of La-Al-Ni metallic glass [J]. Intermetallics, 2019, 111: 106497
|
20 |
Guo W, Shao Y M, Saida J, et al. Rejuvenation and plasticization of Zr-based bulk metallic glass with various Ta content upon deep cryogenic cycling [J]. J. Alloys Compd., 2019, 795: 314
|
21 |
Guo W, Saida J, Zhao M, et al. Rejuvenation of Zr-based bulk metallic glass matrix composite upon deep cryogenic cycling [J]. Mater. Lett., 2019, 247: 135
|
22 |
Gu J L, Luan H W, Zhao S F, et al. Unique energy-storage behavior related to structural heterogeneity in high-entropy metallic glass [J]. Mater. Sci. Eng., 2020, A786: 139417
|
23 |
Ketov S V, Trifonov A S, Ivanov Y P, et al. On cryothermal cycling as a method for inducing structural changes in metallic glasses [J]. NPG Asia Mater., 2018, 10: 137
|
24 |
Liu W H, Sun B A, Gleiter H, et al. Nanoscale structural evolution and anomalous mechanical response of nanoglasses by cryogenic thermal cycling [J]. Nano Lett., 2018, 18: 4188
|
25 |
Li B S, Xie S H, Kruzic J J. Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr-Cu-Ni-Al-Nb bulk metallic glass [J]. Acta Mater., 2019, 176: 278
|
26 |
Saida J, Yamada R, Wakeda M. Recovery of less relaxed state in Zr-Al-Ni-Cu bulk metallic glass annealed above glass transition temperature [J]. Appl. Phys. Lett., 2013, 103: 221910
|
27 |
Wakeda M, Saida J, Li J, et al. Controlled rejuvenation of amorphous metals with thermal processing [J]. Sci. Rep., 2015, 5: 10545
|
28 |
Küchemann S, Derlet P M, Liu C Y, et al. Energy storage in metallic glasses via flash annealing [J]. Adv. Funct. Mater., 2018, 28: 1805385
|
29 |
Kosiba K, Şopu D, Scudino S, et al. Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding [J]. Int. J. Plast., 2019, 119: 156
|
30 |
Xiao Q R, Huang L P, Shi Y F. Suppression of shear banding in amorphous ZrCuAl nanopillars by irradiation [J]. J. Appl. Phys., 2013, 113: 083514
|
31 |
Raghavan R, Boopathy K, Ghisleni R, et al. Ion irradiation enhances the mechanical performance of metallic glasses [J]. Scr. Mater., 2010, 62: 462
|
32 |
Heo J, Kim S, Ryu S, et al. Delocalized plastic flow in proton-irradiated monolithic metallic glasses [J]. Sci. Rep., 2016, 6: 23244
|
33 |
Sun K, Wang G, Wang Y W, et al. Structural rejuvenation and relaxation of a metallic glass induced by ion irradiation [J]. Scr. Mater., 2020, 180: 34
|
34 |
Magagnosc D J, Kumar G, Schroers J, et al. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires [J]. Acta Mater., 2014, 74: 165
|
35 |
Bian X L, Wang G, Chen H C, et al. Manipulation of free volumes in a metallic glass through Xe-ion irradiation [J]. Acta Mater., 2016, 106: 66
|
36 |
Fu C C, Dalla Torre J, Willaime F, et al. Multiscale modelling of defect kinetics in irradiated iron [J]. Nat. Mater., 2005, 4: 68
|
37 |
Baumer R E, Demkowicz M J. Radiation response of amorphous metal alloys: Subcascades, thermal spikes and super-quenched zones [J]. Acta Mater., 2015, 83: 419
|
38 |
Zhao L, Chan K C, Chen S H, et al. Tunable tensile ductility of metallic glasses with partially rejuvenated amorphous structures [J]. Acta Mater., 2019, 169: 122
|
39 |
Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
|
40 |
Liu M, Jiang H Y, Liu X Z, et al. Energy state and properties controlling of metallic glasses by surface rejuvenation [J]. Intermetallics, 2019, 112: 106549
|
41 |
Küchemann S, Maaß R. Gamma relaxation in bulk metallic glasses [J]. Scr. Mater., 2017, 137: 5
|
42 |
Greer A L, Sun Y H. Stored energy in metallic glasses due to strains within the elastic limit [J]. Philos. Mag., 2016, 96: 1643
|
43 |
Park K W, Lee C M, Wakeda M, et al. Elastostatically induced structural disordering in amorphous alloys [J]. Acta Mater., 2008, 56: 5440
|
44 |
Lee J C. Calorimetric study of β-relaxation in an amorphous alloy: An experimental technique for measuring the activation energy for shear transformation [J]. Intermetallics, 2014, 44: 116
|
45 |
Ross P, Küchemann S, Derlet P M, et al. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass [J]. Acta Mater., 2017, 138: 111
|
46 |
Wang Y M, Zhang M, Liu L. Mechanical annealing in the homogeneous deformation of bulk metallic glass under elastostatic compression [J]. Scr. Mater., 2015, 102: 67
|
47 |
Priezjev N V. Aging and rejuvenation during elastostatic loading of amorphous alloys: A molecular dynamics simulation study [J]. Comput. Mater. Sci., 2019, 168: 125
|
48 |
Lou Y, Liu X, Yang X L, et al. Fast rejuvenation in bulk metallic glass induced by ultrasonic vibration precompression [J]. Intermetallics, 2020, 118: 106687
|
49 |
Sohrabi S, Li M X, Bai H Y, et al. Energy storage oscillation of metallic glass induced by high-intensity elastic stimulation [J]. Appl. Phys. Lett., 2020, 116: 081901
|
50 |
Wang D P, Yang Y, Niu X R, et al. Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses [J]. Phys. Rev., 2017, 95B: 235407
|
51 |
Meng F Q, Tsuchiya K, Ii S, et al. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass [J]. Appl. Phys. Lett., 2012, 101: 121914
|
52 |
Qiang J, Tsuchiya K. Composition dependence of mechanically-induced structural rejuvenation in Zr-Cu-Al-Ni metallic glasses [J]. J. Alloys Compd., 2017, 712: 250
|
53 |
Dmowski W, Yokoyama Y, Chuang A, et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation [J]. Acta Mater., 2010, 58: 429
|
54 |
González S, Fornell J, Pellicer E, et al. Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass [J]. Appl. Phys. Lett., 2013, 103: 211907
|
55 |
Concustell A, Méar F O, Suriñach S, et al. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening [J]. Philos. Mag. Lett., 2009, 89: 831
|
56 |
Meylan C M, Orava J, Greer A L. Rejuvenation through plastic deformation of a La-based metallic glass measured by fast-scanning calorimetry [J]. J. Non-Cryst. Solids, 2020, 8X: 100051
|
57 |
Louzguine-Luzgin D V, Ketov S V, Wang Z, et al. Plastic deformation studies of Zr-based bulk metallic glassy samples with a low aspect ratio [J]. Mater. Sci. Eng., 2014, A616: 288
|
58 |
Haruyama O, Kisara K, Yamashita A, et al. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses [J]. Acta Mater., 2013, 61: 3224
|
59 |
Pan J, Chen Q, Liu L, et al. Softening and dilatation in a single shear band [J]. Acta Mater., 2011, 59: 5146
|
60 |
Bei H, Xie S, George E P. Softening caused by profuse shear banding in a bulk metallic glass [J]. Phys. Rev. Lett., 2006, 96: 105503
|
61 |
Liu J W, Cao Q P, Chen L Y, et al. Shear band evolution and hardness change in cold-rolled bulk metallic glasses [J]. Acta Mater., 2010, 58: 4827
|
62 |
Jiang W H, Pinkerton F E, Atzmon M. Deformation-induced nanocrystallization: A comparison of two amorphous Al-based alloys [J]. J. Mater. Res., 2005, 20: 696
|
63 |
Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass [J]. Nat. Commun., 2018, 9: 560
|
64 |
Pan J, Wang Y X, Li Y. Ductile fracture in notched bulk metallic glasses [J]. Acta Mater., 2017, 136: 126
|
65 |
Pan J, Zhou H F, Wang Z T, et al. Origin of anomalous inverse notch effect in bulk metallic glasses [J]. J. Mech. Phys. Solids, 2015, 84: 85
|
66 |
Dong J, Feng Y H, Huan Y, et al. Rejuvenation in hot-drawn micrometer metallic glassy wires [J]. Chin. Phys. Lett., 2020, 37: 017103
|
67 |
Ma Y B, Wang B Z, Zhang Q D, et al. Change dynamic behaviors by heightening its stored energy of monolithic bulk metallic glass [J]. Mater. Des., 2019, 181: 107971
|
68 |
Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep [J]. Acta Mater., 2018, 148: 384
|
69 |
Tong Y, Dmowski W, Yokoyama Y, et al. Recovering compressive plasticity of bulk metallic glasses by high-temperature creep [J]. Scr. Mater., 2013, 69: 570
|
70 |
Ding G, Li C, Zaccone A, et al. Ultrafast extreme rejuvenation of metallic glasses by shock compression [J]. Sci. Adv., 2019, 5: eaaw6249
|
71 |
Song K K, Pauly S, Zhang Y, et al. Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass [J]. Intermetallics, 2011, 19: 1394
|
72 |
Yavari A R, Le Moulec A, Inoue A, et al. Excess free volume in metallic glasses measured by X-ray diffraction [J]. Acta Mater., 2005, 53: 1611
|
73 |
Zhu F, Hirata A, Liu P, et al. Correlation between local structure order and spatial heterogeneity in a metallic glass [J]. Phys. Rev. Lett., 2017, 119: 215501
|
74 |
Zhu F, Song S X, Reddy K M, et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses [J]. Nat. Commun., 2018, 9: 3965
|
75 |
Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
|
76 |
Sarac B, Gammer C, Deng L, et al. Elastostatic reversibility in thermally formed bulk metallic glasses: Nanobeam diffraction fluctuation electron microscopy [J]. Nanoscale, 2018, 10: 1081
|
77 |
Hilke S, Rösner H, Geissler D, et al. The influence of deformation on the medium-range order of a Zr-based bulk metallic glass characterized by variable resolution fluctuation electron microscopy [J]. Acta Mater., 2019, 171: 275
|
78 |
Jiang S Q, Huang Y, Li M Z. Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective [J]. Chin. Phys., 2019, 28B: 046103
|
79 |
Feng S D, Chan K C, Zhao L, et al. Rejuvenation by weakening the medium range order in Zr46Cu46Al8 metallic glass with pressure preloading: A molecular dynamics simulation study [J]. Mater. Des., 2018, 158: 248
|
80 |
Ge T P, Wang C, Tan J, et al. Unusual energy state evolution in Ce-based metallic glass under high pressure [J]. J. Appl. Phys., 2017, 121: 205109
|
81 |
Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
|
82 |
Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses [J]. Philos. Mag. Lett., 2005, 85: 77
|
83 |
Chen L Y, Setyawan A D, Kato H, et al. Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature [J]. Scr. Mater., 2008, 59: 75
|
84 |
Di S Y, Wang Q Q, Zhou J, et al. Enhancement of plasticity for FeCoBSiNb bulk metallic glass with superhigh strength through cryogenic thermal cycling [J]. Scr. Mater., 2020, 187: 13
|
85 |
Song W L, Meng X H, Wu Y, et al. Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation [J]. Sci. Bull., 2018, 63: 840
|
86 |
Bian X L, Zhao D, Kim J T, et al. Controlling the distribution of structural heterogeneities in severely deformed metallic glass [J]. Mater. Sci. Eng., 2019, A752: 36
|
87 |
Ebner C, Pauly S, Eckert J, et al. Effect of mechanically induced structural rejuvenation on the deformation behaviour of CuZr based bulk metallic glass [J]. Mater. Sci. Eng., 2020, A773: 138848
|
88 |
Denis P, Meylan C M, Ebner C, et al. Rejuvenation decreases shear band sliding velocity in Pt-based metallic glasses [J]. Mater. Sci. Eng., 2017, A684: 517
|
89 |
Dieter G E. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1961: 1
|
90 |
Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
|
91 |
Wu Y, Xiao Y H, Chen G L, et al. Bulk metallic glass composites with transformation-mediated work-hardening and ductility [J]. Adv. Mater., 2010, 22: 2770
|
92 |
Lee J C, Kim Y C, Ahn J P, et al. Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite [J]. Acta Mater., 2004, 52: 1525
|
93 |
Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
|
94 |
Chen D Z, Gu X W, An Q, et al. Ductility and work hardening in nano-sized metallic glasses [J]. Appl. Phys. Lett., 2015, 106: 061903
|
95 |
Wang Z T, Pan J, Li Y, et al. Densification and strain hardening of a metallic glass under tension at room temperature [J]. Phys. Rev. Lett., 2013, 111: 135504
|
96 |
Taylor G I. The mechanism of plastic deformation of crystals. Part I. -Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362
|
97 |
Demetriou M D, Launey M E, Garrett G, et al. A damage-tolerant glass [J]. Nat. Mater., 2011, 10: 123
|
98 |
Grell D, Dabrock F, Kerscher E. Cyclic cryogenic pretreatments influencing the mechanical properties of a bulk glassy Zr-based alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 1330
|
99 |
Ketkaew J, Yamada R, Wang H, et al. The effect of thermal cycling on the fracture toughness of metallic glasses [J]. Acta Mater., 2020, 184: 100
|
100 |
Zhang L C, Jia Z, Lyu F, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci., 2019, 105: 100576
|
101 |
Wang Z J, Li M X, Yu J H, et al. Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction [J]. Adv. Mater., 2020, 32: 1906384
|
102 |
Wang J Q, Liu Y H, Chen M W, et al. Rapid degradation of azo dye by Fe-based metallic glass powder [J]. Adv. Funct. Mater., 2012, 22: 2567
|
103 |
Wang J Q, Liu Y H, Chen M W, et al. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders [J]. Sci. Rep., 2012, 2: 418
|
104 |
Lv Z W, Yan Y Q, Yuan C C, et al. Making Fe-Si-B amorphous powders as an effective catalyst for dye degradation by high-energy ultrasonic vibration [J]. Mater. Des., 2020, 194: 108876
|
105 |
Miao F, Wang Q Q, Di S Y, et al. Enhanced dye degradation capability and reusability of Fe-based amorphous ribbons by surface activation [J]. J. Mater. Sci. Technol., 2020, 53: 163
|
106 |
Zhang C Q, Sun Q L. Annealing-induced different decolorization performances of Fe-Mo-Si-B amorphous alloys [J]. J. Non-Cryst. Solids, 2017, 470: 93
|
107 |
Zheng H, Zhu L, Jiang S S, et al. Recovering the bending ductility of the stress-relieved Fe-based amorphous alloy ribbons by cryogenic thermal cycling [J]. J. Alloys Compd., 2019, 790: 529
|
108 |
Ri M C, Sohrabi S, Ding D W, et al. Serrated magnetic properties in metallic glass by thermal cycle [J]. Chin. Phys., 2017, 26B: 066101
|
109 |
Gu J, Shao Y, Shi L, et al. Novel corrosion behaviours of the annealing and cryogenic thermal cycling treated Ti-based metallic glasses [J]. Intermetallics, 2019, 110: 106467
|
110 |
Li S B, Lan F J, Chen S Y, et al. Bulk intrinsic heterogeneity of metallic glasses probed by Meissner effect [J]. Intermetallics, 2020, 119: 106721
|
111 |
Zhong L, Wang J W, Sheng H W, et al. Formation of monatomic metallic glasses through ultrafast liquid quenching [J]. Nature, 2014, 512: 177
|
112 |
Yu H B, Luo Y S, Samwer K. Ultrastable metallic glass [J]. Adv. Mater., 2013, 25: 5904
|
113 |
Lüttich M, Giordano V M, Le Floch S, et al. Anti-aging in ultrastable metallic glasses [J]. Phys. Rev. Lett., 2018, 120: 135504
|
114 |
Yamada R, Tanaka N, Guo W, et al. Crystallization behavior of thermally rejuvenated Zr50Cu40Al10 metallic glass [J]. Mater. Trans., 2017, 58: 1463
|
115 |
Zhou H B, Hilke S, Pineda E, et al. X-ray photon correlation spectroscopy revealing the change of relaxation dynamics of a severely deformed Pd-based bulk metallic glass [J]. Acta Mater., 2020, 195: 446
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|