Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1271-1280    DOI: 10.11900/0412.1961.2021.00530
  研究论文 本期目录 | 过刊浏览 |
显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响
陈伟1, 章环1, 牟娟1(), 朱正旺2, 张海峰2, 王沿东1
1.东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effects of Microstructure and Strain Rate on Dynamic Mechanical Properties and Adiabatic Shear Band of TC4 Alloy
CHEN Wei1, ZHANG Huan1, MU Juan1(), ZHU Zhengwang2, ZHANG Haifeng2, WANG Yandong1
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Sciences and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

陈伟, 章环, 牟娟, 朱正旺, 张海峰, 王沿东. 显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响[J]. 金属学报, 2022, 58(10): 1271-1280.
Wei CHEN, Huan ZHANG, Juan MU, Zhengwang ZHU, Haifeng ZHANG, Yandong WANG. Effects of Microstructure and Strain Rate on Dynamic Mechanical Properties and Adiabatic Shear Band of TC4 Alloy[J]. Acta Metall Sin, 2022, 58(10): 1271-1280.

全文: PDF(2790 KB)   HTML
摘要: 

通过热处理成功获得了等轴、片层和双态3种组织结构的TC4合金,并研究了其动态力学性能及变形机制。通过对比硬化-软化转变临界剪切应变率、最大抗剪切强度、萌发绝热剪切带的临界剪切应变速率和承载时间4个指标评估了3种组织合金的动态力学性能。结果表明,片层组织TC4合金具有较高的抗剪切强度和临界剪切应变速率以及最低的绝热剪切敏感性,其动态力学性能最佳。进一步的微观结构分析表明,3种组织合金中所形成的绝热剪切带均为脆性剪切带,且剪切带宽度随剪切应变速率的增大而减小。当剪切应变速率相同时,3种组织合金的剪切带宽度由大到小依次为:片层组织、双态组织、等轴组织。

关键词 TC4合金动态力学性能绝热剪切敏感性剪切带    
Abstract

Under dynamic load, shear bands constitute the main deformation mode comparaed with quasistatic deformation. This study systematically investigates the influence of microstructures and strain rates of Ti-6Al-4V (TC4) alloys on their adiabatic shear behavior. TC4 alloys with three types of microstructures (lamellar, bimodal, and equiaxial) were successfully obtained via different thermal treatments. The dynamic mechanical properties, such as the critical shear strain rates of the hardening, softening transformation, maximum shear strength, critical shear strain rates of adiabatic shear-band nucleation and bearing time of the three types of microstructures were compared. Results indicate that compared with the lamellar bimodal and equiaxial TC4 alloys, the lamellar TC4 alloy shows the best dynamic mechanical properties, achieving higher shear strength and critical shear strain rates as well as the lowest adiabatic shear sensitivity. Microstructural analysis reveals that the adiabatic shear bands that formed in the three types of alloys are brittle. The width of the shear band decreases with increasing shear strain rate. Furthermore, at the same shear strain rate, the order of the widths of the shear bands is as follows: lamellar TC4 alloy > bimodal TC4 alloy > equiaxial TC4 alloy.

Key wordsTC4 alloy    dynamic mechanical property    adiabatic shear sensitivity    shear band
收稿日期: 2021-12-31     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51771049);国家自然科学基金项目(51790484);国家重点实验室基金项目(JCKYS2020602005)
作者简介: 陈 伟,男,1994年生,硕士生
图1  帽形试样尺寸示意图
图2  TC4合金原始试样和经过不同热处理后的XRD谱
图3  不同组织TC4合金的SEM像
图4  不同组织TC4合金在不同剪切应变速率下的动态剪切应力-应变曲线
图5  不同组织TC4合金的抗剪切强度随剪切应变速率变化曲线
图6  不同剪切应变速率下不同组织TC4合金的剪切应力-时间曲线
Specimen5000 s-16000 s-17000 s-18000 s-1
Equiaxed83797874
Lamellar98878482
Duplex86848077
表1  不同组织TC4合金在不同剪切应变速率下的承载时间 (μs)
图7  不同组织TC4合金的绝热剪切带宽度变化曲线
图8  不同组织TC4合金的绝热剪切带形貌
图9  不同组织TC4合金的裂纹形貌
图10  TC4合金的断裂过程示意图
1 Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry [J]. Mater. Sci. Eng., 1998, A243: 305
2 Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous Met., 2015, 25: 280
2 金和喜, 魏克湘, 李建明 等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25: 280
3 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
4 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
4 杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
5 Rae W. Thermo-metallo-mechanical modelling of heat treatment induced residual stress in Ti-6Al-4V alloy [J]. Mater. Sci. Technol., 2019, 35: 747
doi: 10.1080/02670836.2019.1591031
6 Majorell A, Srivatsa S, Picu R C. Mechanical behavior of Ti-6Al-4V at high and moderate temperatures—Part I: Experimental results [J]. Mater. Sci. Eng., 2002, A326: 297
7 Du Y X, Yang X L, Li Z S, et al. Shear localization behavior in hat-shaped specimen of near-α Ti-6Al-2Zr-1Mo-1V titanium alloy loaded at high strain rate [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1641
doi: 10.1016/S1003-6326(21)65604-2
8 Pramanik A, Littlefair G. Machining of titanium alloy (Ti-6Al-4V)-theory to application [J]. Mach. Sci. Technol., 2015, 19: 1
doi: 10.1080/10910344.2014.991031
9 Zhu Z S, Shang G Q, Wang X N, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. J. Aeronaut. Mater., 2020, 40(3): 1
9 朱知寿, 商国强, 王新南 等. 航空用钛合金显微组织控制和力学性能关系 [J]. 航空材料学报, 2020, 40(3): 1
10 Yang Y, Cheng X L. Current status and trends in researches on adiabatic shearing [J]. Chin. J. Nonferrous Met., 2002, 12: 401
10 杨 扬, 程信林. 绝热剪切的研究现状及发展趋势 [J]. 中国有色金属学报, 2002, 12: 401
11 Liao S C, Duffy J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. J. Mech. Phys. Solids, 1998, 46: 2201
doi: 10.1016/S0022-5096(98)00044-1
12 Yu J Q, Zhou H H, Shen L T, et al. Thermo-plastic shear bands induced during dynamic loading in Ti-55 alloys [J] Acta Metall. Sin., 1999, 35: 379
12 禹金强, 周惠华, 沈乐天 等. Ti-55合金中的热塑剪切带 [J]. 金属学报, 1999, 35: 379
13 Wang B F, Li J, Sun J Y, et al. Adiabatic shear bands in Ti-6Al-4V alloy with lamellar microstructure [J]. J. Mater. Eng. Perform., 2014, 23: 1896
doi: 10.1007/s11665-014-0944-5
14 Sun X R, Wang H Z, Yang P, et al. Mechanical behaviors and micro-shear structures of metals with different structures by high-speed compression [J]. Acta Metall. Sin., 2014, 50: 387
doi: 10.3724/SP.J.1037.2013.00634
14 孙秀荣, 王会珍, 杨 平 等. 不同结构金属高速压缩力学行为及微观剪切结构差异 [J]. 金属学报, 2014, 50: 387
doi: 10.3724/SP.J.1037.2013.00634
15 Peirs J, Verleysen P, Degrieck J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V [J]. Int. J. Impact Eng., 2010, 37: 703
doi: 10.1016/j.ijimpeng.2009.08.002
16 Lee D G, Lee S, Lee C S, et al. Effects of microstructural factors on quasi-static and dynamic deformation behaviors of Ti-6Al-4V alloys with Widmanstatten structures [J]. Metall. Mater. Trans., 2003, 34A: 2541
17 Zheng C, Wang F C, Cheng X W, et al. Capturing of the propagating processes of adiabatic shear band in Ti-6Al-4V alloys under dynamic compression [J]. Mater. Sci. Eng., 2016, A658: 60
18 Li W Q, Geng T Q, Ge S F, et al. Effect of strain rate on compressive behavior of a Zr-based metallic glass under a wide range of strain rates [J]. Materials, 2020, 13: 2861
doi: 10.3390/ma13122861
19 Guo X R, Zhang J X, Yi X B, et al. Influence of volume fraction of secondary α phase on dynamic compression properties and adiabatic shear sensitivity of TC18 titanium alloy [J]. Trans. Mater. Heat Treat., 2020, 41(10): 24
19 郭小汝, 张俊喜, 易湘斌 等. 次生α相含量对TC18钛合金动态压缩性能和绝热剪切敏感性的影响 [J]. 材料热处理学报, 2020, 41(10): 24
20 Chen Y, Pei C H, Li Z X, et al. Dynamic mechanical behavior of α + β titanium alloys at high strain rate [J]. J. Aeronaut. Mater., 2013, 33(6): 8
20 陈 洋, 裴传虎, 李臻熙 等. α + β钛合金在高应变率下的动态力学性能 [J]. 航空材料学报, 2013, 33(6): 8
21 Yi X B, Zhang J X, Li B D, et al. Dynamic compressive mechanical properties of TB6 titanium alloy under high temperature and high strain rate [J]. Rare Met. Mater. Eng., 2019, 48: 1220
21 易湘斌, 张俊喜, 李宝栋 等. 高温、高应变率下TB6钛合金的动态压缩性能 [J]. 稀有金属材料与工程, 2019, 48: 1220
22 Yang H B, Xiang W L, Xu Y, et al. Effect of cooling ways on adiabatic shear sensitivity of TC21 titanium alloy [J]. Chin. J. Nonferrous Met., 2017, 27: 920
22 杨红斌, 向文丽, 徐 媛 等. 冷却方式对TC21钛合金绝热剪切敏感性的影响 [J]. 中国有色金属学报, 2017, 27: 920
23 Mao P L, Sun Q H, Liu Z, et al. Mechanical properties and adiabatic shear sensitivity of Ti-6Al-4V alloy with different microstructures [J]. Chin. J. Rare Met., 2016, 40: 1207
23 毛萍莉, 孙庆海, 刘 正 等. 微观组织状态对Ti-6Al-4V合金动态力学性能和绝热剪切敏感性的影响 [J]. 稀有金属, 2016, 40: 1207
24 Zheng C, Wang F C, Cheng X W, et al. Effect of microstructures on ballistic impact property of Ti-6Al-4V targets [J]. Mater. Sci. Eng., 2014, A608: 53
25 Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical propertiesin α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
25 黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
26 Sun K, Yu X D, Tan C W, et al. Influence of adiabatic shear bands intersection on the ballistic impact of Ti-6Al-4V alloys with three microstructures [J]. Mater. Sci. Eng., 2014, A606: 257
27 Bai L Y. A criterion for thermo-plastic shear instability [A]. Shock Waves and High-Strain-Rate Phenomena in Metals [M]. New York: Springer, 1981: 277
28 Wang Z M, Chen Z Y, Zhan C K, et al. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy [J]. Mater. Sci. Eng., 2017, A691: 51
29 Yan N, Li Z Z, Xu Y B, et al. Shear localization in metallic materials at high strain rates [J]. Prog. Mater. Sci., 2021, 119: 100755
doi: 10.1016/j.pmatsci.2020.100755
30 Recht R F. Catastrophic thermoplastic shear [J]. J. Appl. Mech., 1964, 31: 189
doi: 10.1115/1.3629585
31 Xu Y, Sun K, Zi X F, et al. Study on adiabatic shearing sensitivity of different microstructures of TC6 titanium alloy at different stress states [J]. Rare Met. Mater. Eng., 2011, 40: 2002
31 徐 媛, 孙 坤, 自兴发 等. 不同应力状态下TC6钛合金不同组织绝热剪切敏感性研究 [J]. 稀有金属材料与工程, 2011, 40: 2002
32 Sun Q H. Adiabatic shearing mechanism of Ti- 6Al-4V [D]. Shenyang: Shenyang University of Technology, 2016
32 孙庆海. Ti-6Al-4V 绝热剪切机理 [D]. 沈阳: 沈阳工业大学, 2016
33 Zhou T F, Wu J J, Che J T, et al. Dynamic shear characteristics of titanium alloy Ti-6Al-4V at large strain rates by the split Hopkinson pressure bar test [J]. Int. J. Impact Eng., 2017, 109: 167
doi: 10.1016/j.ijimpeng.2017.06.007
34 Wu G Q, Song H, Sha W, et al. Relationship between microstructure and deformation behaviour during dynamic compression in Ti-3Al-5Mo-5V alloy [J]. Mater. Sci. Technol., 2011, 27: 1399
doi: 10.1179/1743284711Y.0000000019
35 Ran C, Chen P W, Li L, et al. Dynamic shear deformation and failure of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy [J]. Mater. Sci. Eng., 2017, A694: 41
36 Ran C, Chen P W, Li L, et al. High-strain-rate plastic deformation and fracture behaviour of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy at room temperature [J]. Mech. Mater., 2018, 116: 3
doi: 10.1016/j.mechmat.2017.08.007
37 Dodd B, Bai Y L. Introduction to Adiabatic Shear Localization [M]. London: Imperial College Press, 2014: 33
38 Xue Q, Meyers M A, Nesterenko V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy [J]. Acta Mater., 2002, 50: 575
doi: 10.1016/S1359-6454(01)00356-1
39 Lee W S, Lin C F. Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures [J]. Mater. Sci. Eng., 1998, A241: 48
40 Ran C, Chen P W. Shear localization and recrystallization in high strain rate deformation in Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Mater. Lett., 2018, 232: 142
doi: 10.1016/j.matlet.2018.08.095
[1] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[3] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[4] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[5] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[6] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[7] 邢辉, 郭明星, 汪小锋, 张艳, 张济山, 庄林忠. 不同浓度富Fe相粒子对Al-Mg-Si-Cu系合金弯边性能的影响*[J]. 金属学报, 2016, 52(3): 271-280.
[8] 马广财, 付华萌, 王峥, 徐庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[9] 孙秀荣, 王会珍, 杨平, 毛卫民. 不同结构金属高速压缩力学行为及微观剪切结构差异*[J]. 金属学报, 2014, 50(4): 387-394.
[10] 张波,付华萌,朱正旺,张海峰,董闯,胡壮麒. W纤维直径对锆基非晶复合材料压缩力学性能的影响[J]. 金属学报, 2013, 49(10): 1191-1200.
[11] 王杰,张宏伟,王爱民,李,宏,付华萌,朱正旺,张海峰. 一种新型锆钛合金的动态力学行为研究[J]. 金属学报, 2012, 48(5): 636-640.
[12] 唐恋 卢磊. 孪晶片层厚度对纳米孪晶Cu疲劳性能的影响[J]. 金属学报, 2009, 45(7): 808-814.
[13] 王庆娟; 徐长征; 郑茂盛; 朱杰武; M.Buksa; L.Kunz . 等径弯曲通道制备的超细晶铜的疲劳性能[J]. 金属学报, 2007, 43(5): 498-502 .
[14] 刘颢文; 张青川; 卢俊勇; 项国富; 伍小平 . Al-Cu合金中PLC剪切带成核过程三维变形的实验研究[J]. 金属学报, 2006, 42(9): 925-930 .
[15] 卢秋虹; 赵伟松; 隋曼龄; 李斗星 . 液氮温度下动态塑性形变法制备的纳米孪晶铜结构的研究[J]. 金属学报, 2006, 42(9): 909-913 .