|
|
激光沉积法制备Ti/TNTZO层状材料及其组织性能 |
张婷, 李仲杰, 许浩, 董安平( ), 杜大帆, 邢辉, 汪东红, 孙宝德 |
上海交通大学 材料科学与工程学院 上海市先进高温材料与精密成形重点实验室 上海 200240 |
|
Microstruture and Properties of Ti/TNTZO Multi-Layered Material by Direct Laser Deposition |
ZHANG Ting, LI Zhongjie, XU Hao, DONG Anping( ), DU Dafan, XING Hui, WANG Donghong, SUN Baode |
Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
Ting ZHANG,
Zhongjie LI,
Hao XU,
Anping DONG,
Dafan DU,
Hui XING,
Donghong WANG,
Baode SUN.
Microstruture and Properties of Ti/TNTZO Multi-Layered Material by Direct Laser Deposition[J]. Acta Metall Sin, 2021, 57(6): 757-766.
1 |
Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53: 257
|
1 |
郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53: 257
|
2 |
Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods [J]. Sci. Technol. Adv. Mater., 2003, 4: 445
|
3 |
Jacobs J J, Skipor A K, Patterson L M, et al. Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study [J]. J. Bone Joint Surg., 1998, 80: 1447
|
4 |
An B L, Li Z R, Diao X O, et al. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP [J]. Mater. Sci. Eng., 2016, C67: 34
|
5 |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
|
6 |
Wang Q, Han C J, Choma T, et al. Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting [J]. Mater. Des., 2017, 126: 268
|
7 |
Mareci D, Chelariu R, Gordin D M, et al. Comparative corrosion study of Ti-Ta alloys for dental applications [J]. Acta Biomater., 2009, 5: 3625
|
8 |
Zhao X F, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications [J]. Acta Biomater., 2012, 8: 1990
|
9 |
Li Y C, Ding Y F, Munir K, et al. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications [J]. Acta Biomater., 2019, 87: 273
|
10 |
Zhang J R, Zhang Y W, Hao Y L, et al. Plastic deformation behavior of biomedical Ti-24Nb-4Zr-8Sn single crystal alloy [J]. Acta Metall. Sin., 2017, 53: 1385
|
10 |
张金睿, 张晏玮, 郝玉琳等. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究 [J]. 金属学报, 2017, 53: 1385
|
11 |
Bai Y, Li S J, Hao Y L, et al. Electrochemical corrosion behavior of a new biomedical Ti-24Nb-4Zr-8Sn alloy in Hanks solution [J]. Acta Metall. Sin., 2012, 48: 76
|
11 |
白 芸, 李述军, 郝玉琳等. 新型医用Ti-24Nb-4Zr-8Sn合金在Hanks溶液中的电化学腐蚀行为研究 [J]. 金属学报, 2012, 48: 76
|
12 |
Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, C73: 80
|
13 |
Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
|
14 |
Tane M, Nakano T, Kuramoto S, et al. Low young's modulus in Ti-Nb-Ta-Zr-O alloys: Cold working and oxygen effects [J]. Acta Mater., 2011, 59: 6975
|
15 |
Guo W Y, Sun J, Wu J S. Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer's solution [J]. Mater. Chem. Phys., 2009, 113: 816
|
16 |
Li J S, Wang S Z, Mao Q Z, et al. Soft/hard copper/bronze laminates with superior mechanical properties [J]. Mater. Sci. Eng., 2019, A756: 213
|
17 |
Putra N E, Mirzaali M J, Apachitei I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution [J]. Acta Biomater., 2020, 109: 1
|
18 |
Zhang K, Tian X, Bermingham M, et al. Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition [J]. Mater. Des., 2019, 184: 108191
|
19 |
Lima D D, Mantri S A, Mikler C V, et al. Laser additive processing of a functionally graded internal fracture fixation plate [J]. Mater. Des., 2017, 130: 8
|
20 |
Schneider-Maunoury C, Weiss L, Perroud O, et al. An application of differential injection to fabricate functionally graded Ti-Nb alloys using DED-CLAD® process [J]. J. Mater. Process. Technol., 2019, 268: 171
|
21 |
He B, Xing M, Yang G, et al. Effect of composition gradient on microstructure and properties of laser deposition TC4/TC11 interface [J]. Acta Metall. Sin., 2019, 55: 1251
|
21 |
何 波, 邢 盟, 杨 光, 等. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响 [J]. 金属学报, 2019, 55: 1251
|
22 |
Liu Y, Liang C P, Liu W S, et al. Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure [J]. J. Alloys Compd., 2018, 763: 376
|
23 |
Xu H, Xing H, Dong A P, et al. Investigation of gum metal coating on Ti6Al4V plate by direct laser deposition [J]. Surf. Coat. Technol., 2019, 363: 161
|
24 |
Zhao X, Song B, Fan W R, et al. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties [J]. J. Alloys Compd., 2016, 665: 271
|
25 |
Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting [J]. Mater. Des., 2016, 105: 160
|
26 |
Sun Y, Moroz A, Alrbaey K. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel [J]. J. Mater. Eng. Perform., 2014, 23: 518
|
27 |
Meacock C, Vilar R. Laser powder microdeposition of CP2 titanium [J]. Mater. Des., 2008, 29: 353
|
28 |
Attar H, Calin M, Zhang L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J]. Mater. Sci. Eng., 2014, A593: 170
|
29 |
Li X P, van Humbeeck J, Kruth J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective [J]. Mater. Des., 2017, 116: 352
|
30 |
Yamanaka K, Saito W, Mori M, et al. Preparation of weak-textured commercially pure titanium by electron beam melting [J]. Addit. Manuf., 2015, 8: 105
|
31 |
Reichardt A, Dillon R P, Borgonia J P, et al. Development and characterization of Ti-6Al-4V to 304L stainless steel gradient components fabricated with laser deposition additive manufacturing [J]. Mater. Des., 2016, 104: 404
|
32 |
Dinda G P, Dasgupta A K, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability [J]. Mater. Sci. Eng., 2009, A509: 98
|
33 |
Yan H. Microstructure and interfacial characteristics of wear-resistant composite coatings on copper by laser cladding [D]. Wuhan: Huazhong University of Science and Technology, 2010
|
33 |
闫 华. 铜合金表面激光复合耐磨层及界面特性研究 [D]. 武汉: 华中科技大学, 2010
|
34 |
Boyer R, Welsch G, Collings E W. Materials properties handbook: Titanium alloys [R]. Materials Park: ASM, 1994
|
35 |
Wu X D, Yang G J, Ge P, et al. Inductions of β titanium alloy and solid state phase transition [J]. Titan. Ind. Prog., 2008, 25(5): 1
|
35 |
吴晓东, 杨冠军, 葛 鹏等. β钛合金及其固态相变的归纳 [J]. 钛工业进展, 2008, 25(5): 1
|
36 |
Zhang T, Xu H, Li Z J, et al. Microstructure and properties of TC4/TNTZO multi-layered composite by direct laser deposition [J]. J. Mech. Behav. Biomed. Mater., 2020, 109: 103842
|
37 |
Zhao D L, Han C J, Li J J, et al. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting [J]. Mater. Sci. Eng., 2020, C111: 110784
|
38 |
Behera R R, Hasan A, Sankar M R, et al. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti-6Al-4V alloy for enhancing bioactivity and cyto-compatibility [J]. Surf. Coat. Technol., 2018, 352: 420
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|