Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 42-54    DOI: 10.11900/0412.1961.2020.00293
  综述 本期目录 | 过刊浏览 |
难熔高熵合金在反应堆结构材料领域的机遇与挑战
李天昕1, 卢一平1,2(), 曹志强1, 王同敏1, 李廷举1
1.大连理工大学 材料科学与工程学院 辽宁省凝固控制与数字化制备技术重点实验室 大连 116024
2.中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610014
Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials
LI Tianxin1, LU Yiping1,2(), CAO Zhiqiang1, WANG Tongmin1, LI Tingju1
1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610014, China
引用本文:

李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
Tianxin LI, Yiping LU, Zhiqiang CAO, Tongmin WANG, Tingju LI. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials[J]. Acta Metall Sin, 2021, 57(1): 42-54.

全文: PDF(4600 KB)   HTML
摘要: 

传统反应堆结构材料性能已趋于极限,亟需开发新型材料。难熔高熵合金是以多种难熔元素作为主元的新型金属材料,具有独特的力学、物理和化学性质,尤其在高温力学、抗辐照等方面表现出优异的性能。难熔高熵合金在第4代核裂变反应堆包壳材料、核聚变堆面向第一壁材料等关键领域具有广阔的应用前景。本文结合具有代表性的文献,围绕难熔高熵合金的力学性能、抗辐照性能、抗氧化性能阐述了其强化机制与抗辐照机理,梳理了难熔高熵合金的发展脉络,在此基础上展望了难熔高熵合金在反应堆结构材料领域的应用前景。

关键词 难熔高熵合金力学性能抗辐照性能抗氧化性能    
Abstract

Exploitation of traditional reactor structural materials tends to limits; thus, the development of novel materials is urgent. Alloying has long been used to obtain materials with desirable properties. In recent decades, a new alloying technique that combines multiple principal elements in high concentrations to fabricate new materials, termed high-entropy alloys (HEAs), has gained popularity. Refractory HEAs (RHEAs) consist of several principle refractory elements and are an important subset of HEAs. RHEAs have attracted immense attention owing to their unique mechanical, physical, and chemical properties, particularly their excellent high-temperature mechanical properties and radiation resistance. RHEAs are expected to be utilized in cladding materials for fourth-generation fission reactors and plasma-facing materials for fusion reactors. Combined with representative literature, this paper focuses on mechanical, radiation resistance, and oxidation resistance properties of RHEAs. Further, strengthening and radiation resistance mechanisms of RHEAs are explored, and the development evolution and prospects of RHEAs are proposed.

Key wordsrefractory high-entropy alloy    mechanical property    radiation resistance    oxidation resistance
收稿日期: 2020-08-06     
ZTFLH:  TG132.3  
基金资助:国家磁约束核聚变能发展研究专项项目(2018YFE0312400);国家自然科学基金项目(51822402);国家重点研发计划项目(2019YFA0209901);兴辽英才计划项目(XLYC1807047);反应堆燃料及材料重点实验室项目(6142A06190304);西北工业大学凝固技术国家重点实验室资助项目(SKLSP201902)
作者简介: 李天昕,男,1993年生,博士生
图1  传统合金与高熵合金在三元相图中各自占据的区域
图2  几种典型难熔高熵合金与传统镍基高温合金、钼合金、钽合金以及铌合金在不同温度下的强度[36~39]

Alloy

composition

Phase

structure

T / oCσ0.2 / MPaε / %

Equilibrium

condition

TaNbHfZrTi[43]bccRTC929>50.0HIP+A
TaNbHfZrTiMo0.75[14]bccRTC1370>50.0AC
MoNbTaTiV[44]bccRTC220824.9SPS
NbMoTaWVCr[42]bcc+ LavesRTC34165.3SPS
ZrTiHfV0.5Nb0.5C0.2[45]bcc+HfCRTC955>40.0AC
HfNbTa[46]bccRTT84710.0AC
NbZrTiTa[41]bcc+bctRTT65714.4HIP+A
HfNbTiZr[40]bcc+hcpRTT87914.9A
Ti48Zr20Hf15Al10Nb7[47]bccRTT90435.0A
Ti30Al20V20Nb20Mo10[48]bcc800C62430.0AC
TaNbHfZrTiMoW[49]bcc1+bcc21200C703>35.0AC
TaNbHfZrTi[50]bcc1200C356>50.0AC
VNbMoTaW[36]bcc1600C477>10.0AC
NbMoTaW[36]bcc1600C405>10.0AC
表1  难熔高熵合金的屈服强度(σ0.2)、塑性应变(ε)、温度(T)、相结构、名义成分(摩尔分数)和均匀化工艺[14,36,40~50]
图3  单相(S)与多相(M)难熔高熵合金在1200℃的屈服强度(σ0.21200℃)与熔点(Tm)的关系[11]
图4  由价电子浓度区分韧性与脆性难熔高熵合金[59]
图5  通过Labusch模型预测与实验测得的典型难熔高熵合金的屈服强度[64]
图6  通过刃位错模型预测与实验测得的屈服强度与温度的关系[68]
图7  AlMo0.5NbTa0.5TiZr合金的STEM-HAADF像及其快速Fourier变换,立方状无序bcc结构析出相被连续通道状有序B2基体相分割[39]
图8  Ti2ZrHfV0.5Mo0.2合金在不同剂量辐照前后的纳米硬度和晶格常数变化[23]
AlloyEmV / eVEmI/ eV
Ni[92]1.010.11
Ni0.8Fe0.2[90]0.67-1.30 (0.99)0.07-0.44 (0.23)
NiFe[92]0.56-1.71 (0.90)0.01-0.95 (0.30)
NiCo[92]1.04-1.25 (1.16)0.16-0.38 (0.23)
NiCoCr[91]0.34-1.23 (0.94)0.01-0.58 (0.24)
NiCoFeCr[91]0.31-1.36 (0.83)0.00-0.69 (0.31)
表2  部分合金空位迁移能与间隙迁移能的第一性原理计算结果[90~92]
图9  间隙原子团簇在不同合金中的扩散轨迹[75](a) nickel (b) NiCo (c) NiFe
图10  不同氧化产物的合金的氧化动力学示意图[99]
1 Carlson K, Gardner L, Moon J, et al. Molten salt reactors and electrochemical reprocessing: Synthesis and chemical durability of potential waste forms for metal and salt waste streams [J]. Int. Mater. Rev., 2020, doi: 10.1080/09506608.2020.1801229
2 Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
3 Kim J S, Kim T H, Kim K M, et al. Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions [J]. Nucl. Eng. Technol., 2020, 52: 1742
4 Narukawa T, Amaya M. Four-point-bend tests on high-burnup advanced fuel cladding tubes after exposure to simulated LOCA conditions [J]. J. Nucl. Sci. Technol., 2020, 57: 782
5 Liu F, Luo G N, Li Q, et al. Application of tungsten as a plasma-facing material in nuclear fusion reactors [J]. China Tungsten Ind., 2017, 32(2): 41
5 刘 凤, 罗广南, 李 强等. 钨在核聚变反应堆中的应用研究 [J]. 中国钨业, 2017, 32(2): 41
6 Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials [J]. Fusion Eng. Des., 2000, 51-52: 55
7 Umretiya R V, Vargas S, Galeano D, et al. Effect of surface characteristics and environmental aging on wetting of Cr-coated Zircaloy-4 accident tolerant fuel cladding material [J]. J. Nucl. Mater., 2020, 535: 152163
8 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
9 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
10 Laube S, Chen H, Kauffmann A, et al. Controlling crystallographic ordering in Mo-Cr-Ti-Al high entropy alloys to enhance ductility [J]. J. Alloys Compd., 2020, 823: 153805
11 Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys [J]. Acta Mater., 2019, 175: 394
12 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
13 Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤x≤1.25) eutectic refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127869
14 Zhang S, Wang Z, Yang H J, et al. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading [J]. Intermetallics, 2020, 121: 106699
15 Zhang J, Hu Y Y, Wei Q Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders [J]. J. Alloys Compd., 2020, 827: 154301
16 Yurchenko N, Panina E, Tikhonovsky M, et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite [J]. Mater. Lett., 2020, 264: 127372
17 Yan J H, Li M J, Li K L, et al. Effects of Cr content on microstructure and mechanical properties of WMoNbTiCr high-entropy alloys [J]. J. Mater. Eng. Perform., 2020, 29: 2125
18 Yan D L, Song K K, Sun H G, et al. Microstructures, mechanical properties, and corrosion behaviors of refractory high-entropy ReTaWNbMo alloys [J]. J. Mater. Eng. Perform., 2020, 29: 399
19 Xiang L, Guo W M, Liu B, et al. Microstructure and mechanical properties of TaNbVTiAlx refractory high-entropy alloys [J]. Entropy, 2020, 22: 282
20 Xiang C, Fu H M, Zhang Z M, et al. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys [J]. J. Alloys Compd., 2020, 818: 153352
21 Soni V, Senkov O N, Couzinie J P, et al. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 [J]. Materialia, 2020, 9: 100569
22 Chang S, Tseng K K, Yang T Y, et al. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127832
23 Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 369
24 Kareer A, Waite J C, Li B, et al. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’ [J]. J. Nucl. Mater., 2019, 526: 151744
25 El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
26 Xiao Y F, Kuang W H, Xu Y F, et al. Microstructure and oxidation behavior of the CrMoNbTaV high-entropy alloy [J]. J. Mater. Res., 2019, 34: 301
27 Osei-Agyemang E, Balasubramanian G. Surface oxidation mechanism of a refractory high-entropy alloy [J]. npj Mater. Degrad., 2019, 3: 20
28 Müeller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
29 Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
30 Niu Z Z, Xu J, Wang T, et al. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x=0, 0.2, 0.5) high entropy alloys [J]. Intermetallics, 2019, 112: 106550
31 Hung S B, Wang C J, Chen Y Y, et al. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings [J]. Surf. Coat. Technol., 2019, 375: 802
32 Montero J, Ek G, Laversenne L, et al. Hydrogen storage properties of the refractory Ti-V-Zr-Nb-Ta multi-principal element alloy [J]. J. Alloys Compd., 2020, 835: 155376
33 Hu J T, Zhang J J, Xiao H Y, et al. A density functional theory study of the hydrogen absorption in high entropy alloy TiZrHfMoNb [J]. Inorg. Chem., 2020, 59: 4782
34 Edalati P, Floriano R, Mohammadi A, et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi [J]. Scr. Mater., 2020, 178: 387
35 De Marco M O, Li Y T, Li H W, et al. Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy [J]. Adv. Eng. Mater., 2020, 22: 1901079
36 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
37 Yin W H, Tang H P. Materials and Engineering Applications in Refractory Metal Materials [M]. Beijing: Metallurgical Industry Press, 2012: 108
37 殷为宏, 汤慧萍. 难熔金属材料与工程应用 [M]. 北京: 冶金工业出版社, 2012: 108
38 Chen H, Kauffmann A, Gorr B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al [J]. J. Alloys Compd., 2016, 661: 206
39 Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
40 Wu Y D, Cai Y H, Wang J J, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
41 Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy [J]. Mater. Des., 2019, 162: 256
42 Long Y, Liang X B, Su K, et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties [J]. J. Alloys Compd., 2019, 780: 607
43 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
44 Liu Q, Wang G F, Sui X C, et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2019, 35: 2600
45 Chen W K, Li Y K, Chen Y W. High compressibility ZrTiHf-V0.5Nb0.5Cx refractory high-entropy alloys [J]. Mater. Sci. Forum, 2019, 944: 163
46 Wang S P, Ma E, Xu J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution [J]. Intermetallics, 2019, 107: 15
47 Wang L, Fu C, Wu Y D, et al. Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning [J]. Mater. Sci. Eng., 2019, A763: 138147
48 Xu Z Q, Ma Z L, Wang M, et al. Design of novel low-density refractory high entropy alloys for high-temperature applications [J]. Mater. Sci. Eng., 2019, A755: 318
49 Wang M, Ma Z L, Xu Z Q, et al. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys [J]. J. Alloys Compd., 2019, 803: 778
50 Yang C, Aoyagi K, Bian H K, et al. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr [J]. Mater. Lett., 2019, 254: 46
51 Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
52 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
53 Rao S I, Antillon E, Woodward C, et al. Solution hardening in body-centered cubic quaternary alloys interpreted using Suzuki􀆳s kink-solute interaction model [J]. Scr. Mater., 2019, 165: 103
54 Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5 [J]. Acta Mater., 2019, 168: 222
55 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
56 Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
57 Tsai M H, Chang K C, Li J H, et al. A second criterion for sigma phase formation in high-entropy alloys [J]. Mater. Res. Lett., 2016, 4: 90
58 Yang S G, Lu J, Xing F Z, et al. Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design—A case study with Al-Co-Cr-Fe-Ni system [J]. Acta Mater., 2020, 192: 11
59 Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys [J]. J. Appl. Phys., 2016, 120: 164902
60 Qi L, Chrzan D C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys [J]. Phys. Rev. Lett., 2014, 112: 115503
61 Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41: 659
62 Yao H W, Qiao J W, Hawk J A, et al. Mechanical properties of refractory high-entropy alloys: Experiments and modeling [J]. J. Alloys Compd., 2017, 696: 1139
63 Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J. Modelling solid solution hardening in high entropy alloys [J]. Acta Mater., 2015, 85: 14
64 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
65 Lü Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
65 吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
66 Seeger A. LXV. On the theory of the low-temperature internal friction peak observed in metals [J]. Philos. Mag., 1956, 1: 651
67 Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys [J]. Acta Mater., 2020, 182: 144
68 Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
69 Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
70 Zhang L C, Xiang Y, Han J, et al. The effect of randomness on the strength of high-entropy alloys [J]. Acta Mater., 2019, 166: 424
71 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
72 Soni V, Senkov O N, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy [J]. Sci. Rep., 2018, 8: 8816
73 Soni V, Gwalani B, Senkov O N, et al. Phase stability as a function of temperature in a refractory high-entropy alloy [J]. J. Mater. Res., 2018, 33: 3235
74 Soni V, Gwalani B, Alam T, et al. Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy [J]. Acta Mater., 2020, 185: 89
75 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
76 Lu C Y, Yang T N, Jin K, et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys [J]. Acta Mater., 2017, 127: 98
77 Yang T N, Lu C Y, Jin K, et al. The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys [J]. J. Nucl. Mater., 2017, 488: 328
78 Lu C Y, Yang T N, Jin K, et al. Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations [J]. Mater. Res. Lett., 2018, 6: 584
79 Lu C Y, Yang T N, Niu L L, et al. Interstitial migration behavior and defect evolution in ion irradiated pure nickel and Ni-xFe binary alloys [J]. J. Nucl. Mater., 2018, 509: 237
80 Yang T N, Lu C Y, Velisa G, et al. Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd [J]. Scr. Mater., 2019, 158: 57
81 Sadeghilaridjani M, Muskeri S, Pole M, et al. High-temperature nano-indentation creep of reduced activity high entropy alloys based on 4-5-6 elemental palette [J]. Entropy, 2020, 22: 230
82 Lü Z. Development and prospect of nano-structured ODS steels for fusion reactor first wall application [J]. Atomic Energy Sci. Technol., 2011, 45: 1105
82 吕 铮. 聚变堆第一壁用纳米结构ODS钢的发展与前瞻 [J]. 原子能科学技术, 2011, 45: 1105
83 Sadeghilaridjani M, Ayyagari A, Muskeri S, et al. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy [J]. J. Nucl. Mater., 2020, 529: 151955
84 Patel D, Richardson M D, Jim B, et al. Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04 [J]. J. Nucl. Mater., 2020, 531: 152005
85 Moschetti M, Xu A, Schuh B, et al. On the room-temperature mechanical properties of an ion-irradiated TiZrNbHfTa refractory high entropy alloy [J]. JOM, 2020, 72(1): 130
86 Nagase T, Anada S, Rack P D, et al. MeV electron-irradiation-induced structural change in the bcc phase of Zr-Hf-Nb alloy with an approximately equiatomic ratio [J]. Intermetallics, 2013, 38: 70
87 Liang W, Yang J J, Zhang F F, et al. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures [J]. J. Nucl. Mater., 2018, 501: 388
88 Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
89 Aidhy D S, Lu C Y, Jin K, et al. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments [J]. Acta Mater., 2015, 99: 69
90 Fan Z, Zhao S J, Jin K, et al. Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys [J]. Acta Mater., 2019, 164: 283
91 Zhao S J, Egami T, Stocks G M, et al. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys [J]. Phys. Rev. Mater., 2018, 2: 013602
92 Zhao S J, Stocks G M, Zhang Y W. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2 [J]. Phys. Chem. Chem. Phys., 2016, 18: 24043
93 Wang Z J, Liu C T, Dou P. Thermodynamics of vacancies and clusters in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 043601
94 Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20: 1700948
95 Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
96 Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
97 Gorr B, Müeller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition [J]. Oxid. Met., 2017, 88: 339
98 Cao Y K, Liu Y, Liu B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1476
99 Butler T M, Chaput K J. Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA) [J]. J. Alloys Compd., 2019, 787: 606
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.