Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 29-41    DOI: 10.11900/0412.1961.2020.00270
  综述 本期目录 | 过刊浏览 |
形状记忆合金弹热制冷效应的研究现状
肖飞, 陈宏, 金学军()
上海交通大学 材料科学与工程学院 上海 200240
Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy
XIAO Fei, CHEN Hong, JIN Xuejun()
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
Fei XIAO, Hong CHEN, Xuejun JIN. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. Acta Metall Sin, 2021, 57(1): 29-41.

全文: PDF(5524 KB)   HTML
摘要: 

弹热制冷效应是利用固-固相变潜热的交替吸收和释放,实现制冷,具有能效高、温变较大和无制冷剂等特点,是非气-液压缩制冷首选技术。与磁热和电热制冷相比,弹热制冷具有成本低、制冷幅度大及效能高等优点。弹热效应所采用的材料主要为形状记忆合金,也成为该类合金近十来年的研究热点。本文概述了弹热效应的制冷机理及测量方法,归纳总结了Ti-Ni基、铜基、铁基以及Heusler型形状记忆合金体系作为弹热制冷材料的研究现状、潜力及尚存在的问题,并对形状记忆合金弹热制冷材料的应用进行了展望。

关键词 弹热效应形状记忆合金马氏体相变    
Abstract

Elastocaloric refrigeration is characterized by a high energy efficiency and drastic temperature change, and it requires no refrigerant. It is the best candidate for the non-gas-liquid compression refrigeration technology, which has the advantage of alternate absorption and release of latent heat during solid-solid phase transformation to realize refrigeration. Compared with the magnetocaloric and electrocaloric refrigeration, elastocaloric refrigeration exhibits advantages such as low cost, high cooling rate, and high efficiency. Elastocaloric refrigeration mainly employs shape memory alloys, which have been a research focus in the past decades. This study describes the mechanism and test methods of the elastocaloric effect and summarizes the research progress as well as challenges in the Ti-Ni-based, Cu-based, Fe-based, and Heusler-type shape-memory alloys as elastocaloric materials. Furthermore, a brief perspective on research directions of the elastocaloric effect based on shape memory alloys is presented herein.

Key wordselastocaloric effect    shape memory alloy    martensitic transformation
收稿日期: 2020-07-21     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(51871151);上海市自然科学基金项目(20ZR1428800)
作者简介: 肖 飞,男,1984年生,博士
EffectControl parameterTemperature change / KMaterial
MagnetocaloricMagnetic field (1.93 T)7.3LaFe11.6Si1.4
ElectrocaloricElectric field (25 V)12.0PbZr0.95Ti0.05O3
ElastocaloricUniaxial stress (120 MPa)15.0Cu68Zn15Al17
BarocaloricHydrostatic pressure (260 MPa)4.5Ni49Mn36In15
表1  各类固态制冷效应,诱发相变参数、典型温度变化及材料的对比[12]
图1  形状记忆合弹热效应原理示意图
图2  Ti-Ni形状记忆合金拉伸时弹热温度变化测试系统的示意图
图3  快速拉伸与卸载过程中,红外探测所得Ti-Ni形状记忆合金样品温度的演变[19]
图4  Ti-44Ni-5Cu-1Al形状记忆合金加载过程中的样品温度及应变演化[30]
图5  根据文献[46]绘制的具有特定Ti3Ni4析出相排布的Ti-Ni形状记忆合金的反弹热效应
图6  根据文献[72,73]绘制的具有典型一级马氏体相变的Ni-Fe-Ga-Co合金和具有弱一级马氏体相变的Fe-Pd合金弹热效应起源的比较
图7  几类代表性弹热制冷材料的等温熵变(ΔSiso)和绝热温度变化(ΔTadi)的对比
1 Coulomb D, Dupont J L, Pichard A. The role of refrigeration in the global economy [A]. Proceedings of the 29th Informatory Note on Refrigeration Technologies [C]. France: International Institute of Refrigeration, 2015
2 Calm J M. The next generation of refrigerants—Historical review, considerations, and outlook [J]. Int. J. Refrig., 2008, 31: 1123
3 Moya X, Kar-Narayan S, Mathur N D. Caloric materials near ferroic phase transitions [J]. Nat. Mater., 2014, 13: 439
4 Crossley S, Mathur N D, Moya X. New developments in caloric materials for cooling applications [J]. AIP Adv., 2015, 5: 067153
5 Liu J, Gottschall T, Skokov K P, et al. Giant magnetocaloric effect driven by structural transitions [J]. Nat. Mater., 2012, 11: 620
6 Gschneidner K A, Pecharsky V K. Magnetocaloric materials [J]. Annu. Rev. Mater. Sci., 2000, 30: 387
7 Hao X H, Zhai J W, Kong L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials [J]. Prog. Mater. Sci., 2014, 63: 1
8 Moya X, Stern-Taulats E, Crossley S, et al. Giant electrocaloric strength in single-crystal BaTiO3 [J]. Adv. Mater., 2013, 25: 1360
9 Mañosa L, Planes A. Materials with giant mechanocaloric effects: Cooling by strength [J]. Adv. Mater., 2017, 29: 1603607
10 Mañosa L, Planes A, Acet M. Advanced materials for solid-state refrigeration [J]. J. Mater. Chem., 2013, 1A: 4925
11 Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy [J]. Nat. Mater., 2010, 9: 478
12 Fähler S, Rößler U K, Kastner O, et al. Caloric effects in ferroic materials: New concepts for cooling [J]. Adv. Eng. Mater., 2012, 14: 10
13 EERE Publication and Product Library. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies [R]. United States:
13 U.S. Department of Energy, 2014
14 Gough J P. On some thermo-dynamic properties of solids [J]. Philos. Trans. R. Soc. London, 1859, 149: 91
15 Rodriguez C, Brown L C. The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals [J]. Metall. Mater. Trans., 1980, 11A: 147
16 Bonnot E, Romero R, Mañosa L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys [J]. Phys. Rev. Lett., 2008, 100: 125901
17 Ossmer H, Chluba C, Gueltig M, et al. Local evolution of the elastocaloric effect in TiNi-based films [J]. Shape Mem. Superelast., 2015, 1: 142
18 Ossmer H, Lambrecht F, Gültig M, et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling [J]. Acta Mater., 2014, 81: 9
19 Tušek J, Žerovnik A, Čebron M, et al. Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling [J]. Acta Mater., 2018, 150: 295
20 Gràcia-Condal A, Stern-Taulats E, Planes A, et al. The giant elastocaloric effect in a Cu-Zn-Al shape-memory alloy: A calorimetric study [J]. Phys. Status Solidi, 2018, 255B: 1700422
21 Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. J. Appl. Phys., 1963, 34: 1475
22 Cui J, Wu Y M, Muehlbauer J, et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires [J]. Appl. Phys. Lett., 2012, 101: 073904
23 Tušek J, Engelbrecht K, Mikkelsen L P, et al. Elastocaloric effect of Ni-Ti wire for application in a cooling device [J]. J. Appl. Phys., 2015, 117: 124901
24 Tušek J, Engelbrecht K, Millán-Solsona R, et al. The elastocaloric effect: A way to cool efficiently [J]. Adv. Energy Mater., 2015, 5: 1500361
25 Tušek J, Engelbrecht K, Eriksen D, et al. A regenerative elastocaloric heat pump [J]. Nat. Energy, 2016, 1: 16134
26 Bechtold C, Chluba C, Lima d M R, et al. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films [J]. Appl. Phys. Lett., 2012, 101: 091903
27 Chen H, Xiao F, Liang X, et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement [J]. Scr. Mater., 2019, 162: 230
28 Chluba C, Ge W W, de Miranda R L, et al. Ultralow-fatigue shape memory alloy films [J]. Science, 2015, 348: 1004
29 Chen H, Xiao F, Liang X, et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy [J]. Acta Mater., 2018, 158: 330
30 Chen H, Xiao F, Liang X, et al. Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti-Ni-Cu shape memory alloy [J]. Acta Mater., 2019, 177: 169
31 Hou H L, Simsek E, Ma T, et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing [J]. Science, 2019, 366: 1116
32 Chen H, Xiao F, Zhu L, et al. Elastocaloric effect with a broad temperature window and low energy loss in an ultrafine-grained Ti-44Ni-5Cu-1Al (at%) shape memory alloy, in press
33 Wagner M, Sawaguchi T, Kausträter G, et al. Structural fatigue of pseudoelastic NiTi shape memory wires [J]. Mater. Sci. Eng., 2004, A378: 105
34 Zhang Y H, You Y J, Moumni Z, et al. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys [J]. Int. J. Plast., 2017, 90: 1
35 Yu C, Kang G Z, Kan Q H, et al. Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: Thermo-mechanical coupled and physical mechanism-based constitutive model [J]. Int. J. Plast., 2015, 72: 60
36 Ossmer H, Chluba C, Gueltig M, et al. Local evolution of the elastocaloric effect in TiNi-based films [J]. Shape Mem. Superelast., 2015, 1: 142
37 Schmidt M, Kirsch S M, Seelecke S, et al. Elastocaloric cooling: From fundamental thermodynamics to solid state air conditioning [J]. Sci. Technol. Built Environ., 2016, 22: 475
38 Schmidt M, Ullrich J, Wieczorek A, et al. Thermal stabilization of NiTiCuV shape memory alloys: Observations during elastocaloric training [J]. Shape Mem. Superelast., 2015, 1: 132
39 Li S H, Cong D Y, Sun X M, et al. Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy [J]. Mater. Res. Lett., 2019, 7: 482
40 Xiao Y, Zeng P, Lei L P, et al. In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy [J]. Mater. Des., 2017, 134: 111
41 Engelbrecht K, Tušek J, Sanna S, et al. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling [J]. APL Mater., 2016, 4: 064110
42 Pataky G J, Ertekin E, Sehitoglu H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl [J]. Acta Mater., 2015, 96: 420
43 Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation [J]. Acta Mater., 2017, 135: 158
44 Soto-Parra D, Vives E, Mañosa L, et al. Elastocaloric effect in Ti-Ni shape-memory wires associated with the B2↔B19' and B2↔R structural transitions [J]. Appl. Phys. Lett., 2016, 108: 071902
45 Liang X, Xiao F, Jin M J, et al. Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8Ni (at.%) alloy [J]. Scr. Mater., 2017, 134: 42
46 Xiao F, Fukuda T, Kakeshita T. Inverse elastocaloric effect in a Ti-Ni alloy containing aligned coherent particles of Ti3Ni4 [J]. Scr. Mater., 2016, 124: 133
47 Miyazaki S, Otsuka K. Development of shape memory alloys [J]. ISIJ Int., 1989, 29: 353
48 Miura S, Morita Y, Nakanishi N. Shape Memory Effects in Alloys [M]. Boston, MA: Springer, 1975: 389
49 Miura S, Maeda S, Nakanishi N. Pseudoelasticity in Au-Cu-Zn thermoelastic martensite [J]. Philo. Mag., 1974, 30: 565
50 Brown L C. The thermal effect in pseudoelastic single crystals of β-CuZnSn [J]. Metall. Mater. Trans., 1981, 12A: 1491
51 Mañosa L, Planes A, Ortín J, et al. Entropy change of martensitic transformations in Cu-based shape-memory alloys [J]. Phys. Rev., 1993, 48B: 3611
52 Vives E, Burrows S, Edwards R S, et al. Temperature contour maps at the strain-induced martensitic transition of a Cu-Zn-Al shape-memory single crystal [J]. Appl. Phys. Lett., 2011, 98: 011902
53 Mañosa L, Jarque-Farnos S, Vives E, et al. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys [J]. Appl. Phys. Lett., 2013, 103: 211904
54 Omori T, Kusama T, Kawata S, et al. Abnormal grain growth induced by cyclic heat treatment [J]. Science, 2013, 341: 1500
55 Chen Y, Zhang X Z, Dunand D C, et al. Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires [J]. Appl. Phys. Lett., 2009, 95: 171906
56 Yuan B, Zhu X J, Zhang X X, et al. Elastocaloric effect with small hysteresis in bamboo-grained Cu-Al-Mn microwires [J]. J. Mater. Sci., 2019, 54: 9613
57 Yuan B, Qian M F, Zhang X X, et al. Enhanced cyclic stability of elastocaloric effect in oligocrystalline Cu-Al-Mn microwires via cold-drawing [J]. Int. J. Refrig., 2020, 114: 54
58 Yuan B, Qian M F, Zhang X X, et al. Grain structure related inhomogeneous elastocaloric effects in Cu-Al-Mn shape memory microwires [J]. Scr. Mater., 2020, 178: 356
59 Wayman C M. On memory effects related to martensitic transformations and observations in β-brass and Fe3Pt [J]. Scr. Metall., 1971, 5: 489
60 Peng H B, Chen J, Wang Y N, et al. Key factors achieving large recovery strains in polycrystalline Fe-Mn-Si-based shape memory alloys: A review [J]. Adv. Eng. Mater., 2018, 20: 1700741
61 Maki T, Tamura I. On the thin plate martensite in ferrous alloys and it􀆳s various properties [J]. Bull. Jpn. Inst. Met., 1984, 23: 229
61 牧 正志, 田村 今男. 鉄合金の“thin plate”マルテンサイトとその性質 [J]. 日本金属学会会報, 1984, 23: 229
62 Yang G S, Jonnasson R, Bake S N, et al. Phase transformations of ferromagnetic Fe-Pd-Pt-based shape memory alloys [J]. Mater. Devices Smart Syst., 2004, 785: 475
63 Nikitin S A, Myalikgulyev G, Annaorazov M P, et al. Giant elastocaloric effect in FeRh alloy [J]. Phys. Lett., 1992, 171A: 234
64 Annaorazov M P, Nikitin S A, Tyurin A L, et al. Heat pump cycles based on the AF-F transition in Fe-Rh alloys induced by tensile stress [J]. Int. J. Refrig., 2002, 25: 1034
65 Manekar M, Roy S B. Reproducible room temperature giant magnetocaloric effect in Fe-Rh [J]. J. Phys., 2008, 41D: 192004
66 Manekar M, Roy S B. Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh [J]. J. Phys., 2011, 44D: 242001
67 Barua R, Jiménez-Villacorta F, Lewis L H. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds [J]. J. Appl. Phys., 2014, 115: 17A903
68 Zverev V I, Saletsky A M, Gimaev R R, et al. Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6 [J]. Appl. Phys. Lett., 2016, 108: 192405
69 Kamantsev A P, Amirov A A, Koshkid􀆳ko Y S,et al. Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T [J]. Phys. Solid State, 2020, 62: 160
70 Annaorazov M P, Nikitin S A, Tyurin A L, et al. Anomalously high entropy change in FeRh alloy [J]. J. Appl. Phys., 1996, 79: 1689
71 Gràcia-Condal A, Stern-Taulats E, Planes A, et al. Caloric response of Fe49Rh51 subjected to uniaxial load and magnetic field [J]. Phys. Rev. Mater., 2018, 2: 084413
72 Xiao F, Fukuda T, Kakeshita T. Significant elastocaloric effect in a Fe-31.2Pd (at.%) single crystal [J]. Appl. Phys. Lett., 2013, 102: 161914
73 Xiao F, Jin M J, Liu J, et al. Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals [J]. Acta Mater., 2015, 96: 292
74 Xiao F, Fukuda T, Kakeshita T, et al. Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy [J]. Acta Mater., 2015, 87: 8
75 Tanaka Y, Himuro Y, Kainuma R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity [J]. Science, 2010, 327: 1488
76 Omori T, Ando K, Okano M, et al. Superelastic effect in polycrystalline ferrous alloys [J]. Science, 2011, 333: 68
77 Omori T, Abe S, Tanaka Y, et al. Thermoelastic martensitic transformation and superelasticity in Fe-Ni-Co-Al-Nb-B polycrystalline alloy [J]. Scr. Mater., 2013, 69: 812
78 Tseng L W, Ma J, Hornbuckle B C, et al. The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression [J]. Acta Mater., 2015, 97: 234
79 Krooß P, Somsen C, Niendorf T, et al. Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals [J]. Acta Mater., 2014, 79: 126
80 Huang P, Peng H B, Wang S L, et al. Relationship between martensitic reversibility and different nano-phases in a FeMnAlNi shape memory alloy [J]. Mater. Charact., 2016, 118: 22
81 Hu F X, Shen B G, Sun J R. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy [J]. Appl. Phys. Lett., 2000, 76: 3460
82 Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
83 Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nat. Mater., 2005, 4: 450
84 Liu J, Woodcock T G, Scheerbaum N, et al. Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons [J]. Acta Mater., 2009, 57: 4911
85 Marcos J, Planes A, Mañosa L, et al. Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys [J]. Phys. Rev., 2002, 66B: 224413
86 Soto-Parra D E, Vives E, González-Alonso D, et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni-Mn-Ga shape-memory alloys [J]. Appl. Phys. Lett., 2010, 96: 071912
87 Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, et al. Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25-xGa25Cox magnetic shape memory alloy [J]. Phys. Rev., 2011, 83B: 174109
88 Huang C H, Wang Y, Tang Z, et al. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni-Cu-Mn-Ga ferromagnetic shape memory alloy [J]. J. Alloys Compd., 2015, 630: 244
89 Segui C, Torrens-Serra J, Cesari E, et al. Optimizing the caloric properties of Cu-doped Ni-Mn-Ga alloys [J]. Materials, 2020, 13: 419
90 Li D, Li Z B, Yang J J, et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy [J]. Scr. Mater., 2019, 163: 116
91 Wei L S, Zhang X X, Liu J, et al. Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys [J]. AIP Adv., 2018, 8: 055312
92 Wei L S, Zhang X X, Gan W M, et al. Hot extrusion approach to enhance the cyclic stability of elastocaloric effect in polycrystalline Ni-Mn-Ga alloys [J]. Scr. Mater., 2019, 168: 28
93 Lu B F, Xiao F, Yan A R, et al. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy [J]. Appl. Phys. Lett., 2014, 105: 161905
94 Lu B F, Zhang P N, Xu Y, et al. Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling [J]. Mater. Lett., 2015, 148: 110
95 Zhao D W, Liu J, Feng Y, et al. Giant elastocaloric effect and its irreversibility in [001]-oriented Ni45Mn36.5In13.5Co5 meta-magnetic shape memory alloys [J]. Appl. Phys. Lett., 2017, 110: 021906
96 Shen Q, Zhao D W, Sun W, et al. The effect of Tb on elastocaloric and mechanical properties of Ni-Mn-In-Tb alloys [J]. J. Alloys Compd., 2017, 696: 538
97 Yang Z, Cong D Y, Sun X M, et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys [J]. Acta Mater., 2017, 127: 33
98 Tang X H, Feng Y, Wang H B, et al. Enhanced elastocaloric effect and cycle stability in B and Cu co-doping Ni-Mn-In polycrystals [J]. Appl. Phys. Lett., 2019, 114: 033901
99 Hernández-Navarro F, Camarillo-Garcia J P, Aguilar-Ortiz C O, et al. The influence of texture on the reversible elastocaloric effect of a polycrystalline Ni50Mn32In16Cr2 alloy [J]. Appl. Phys. Lett., 2018, 112: 164101
100 Lu B, Song M, Zhou Z, et al. Reducing mechanical hysteresis via tuning the microstructural orientations in Heusler-type Ni44.8Mn36.9In13.3Co5.0 elastocaloric alloys [J]. J. Alloys Compd., 2019, 785: 1023
101 Huang X M, Wang L D, Liu H X, et al. Correlation between microstructure and martensitic transformation, mechanical properties and elastocaloric effect in Ni-Mn-based alloys [J]. Intermetallics, 2019, 113: 106579
102 Huang Y J, Hu Q D, Bruno N M, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy [J]. Scr. Mater., 2015, 105: 42
103 Sun W, Liu J, Lu B F, et al. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys [J]. Scr. Mater., 2016, 114: 1
104 Shen Y, Sun W, Wei Z Y, et al. Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys [J]. Scr. Mater., 2019, 163: 14
105 Li Y, Sun W, Zhao D W, et al. An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45-xSn11-Cux alloys [J]. Scr. Mater., 2017, 130: 278
106 Millán-Solsona R, Stern-Taulats E, Vives E, et al. Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys [J]. Appl. Phys. Lett., 2014, 105: 241901
107 Qu Y H, Gràcia-Condal A, Mañosa L, et al. Outstanding caloric performances for energy-efficient multicaloric cooling in a Ni-Mn-based multifunctional alloy [J]. Acta Mater., 2019, 177: 46
108 Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
109 Li Y, Zhao D W, Liu J, et al. Energy-efficient elastocaloric cooling by flexibly and reversibly transferring interface in magnetic shape-memory alloys [J]. ACS Appl. Mater. Interfaces, 2018, 10: 25438
110 Kirsch S M, Welsch F, Michaelis N, et al. NiTi-based elastocaloric cooling on the macroscale: From basic concepts to realization [J]. Energy Technol., 2018, 6: 1567
111 Kirsch S M, Schmidt M, Welsch F, et al. Development of a shape memory based air conditioning system [A]. 59th Ilmenau Scientific Colloquium [C]. Ilmenau: Technische Universität Ilmenau, 2017
112 Michaelis N, Welsch F, Kirsch S M, et al. Experimental parameter identification for elastocaloric air cooling [J]. Int. J. Refrig., 2019, 100: 167
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[8] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[12] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[13] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[14] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.