|
|
两步贝氏体转变对中碳微纳结构钢韧性的影响 |
万响亮1,胡锋1,2,3( ),成林2,3,黄刚2,3,张国宏2,3,吴开明1,2,3 |
1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081 2. 武汉科技大学高性能钢铁材料及其应用湖北省协同创新中心 武汉 430081 3. 武汉科技大学国际钢铁研究院 武汉 430081 |
|
Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel |
WAN Xiangliang1,HU Feng1,2,3( ),CHENG Lin2,3,HUANG Gang2,3,ZHANG Guohong2,3,WU Kaiming1,2,3 |
1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 2. Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China 3. International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China |
引用本文:
万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
WAN Xiangliang,
HU Feng,
CHENG Lin,
HUANG Gang,
ZHANG Guohong,
WU Kaiming.
Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. Acta Metall Sin, 2019, 55(12): 1503-1511.
[1] | Bhadeshia H K D H. Bainite in Steels: Transformation, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 19 | [2] | Bhadeshia H K D H. Nanostructured bainite [J]. Proc. Roy. Soc., 2010, 466: 3 | [3] | Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels [J]. ISIJ Int., 2005, 45: 1736 | [4] | Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite [J]. ISIJ Int., 2003, 43: 1238 | [5] | García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 495 | [6] | Bhadeshia H K D H. High performance bainitic steels [J]. Mater. Sci. Forum, 2005, 500-501: 63 | [7] | Timokhina I B, Beladi H, Xiong X Y, et al. Nanoscale microstructural characterization of a nanobainitic steel [J]. Acta Mater., 2011, 59: 5511 | [8] | Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: New composition-property approach part 1 [J]. Met. Sci., 1983, 17: 411 | [9] | Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: New composition-property approach part 2 [J]. Met. Sci., 1983, 17: 420 | [10] | Caballero F G, Santofimia M J, García-Mateo C, et al. Theoretical design and advanced microstructure in super high strength steels [J]. Mater. Des., 2009, 30: 2077 | [11] | Caballero F G, Chao J, Cornide J, et al. Toughness deterioration in advanced high strength bainitic steels [J]. Mater. Sci. Eng., 2009, A525: 87 | [12] | Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bimodal size-distribution of bainite plates [J]. Mater. Sci. Eng., 2006, A438-440: 145 | [13] | Wang X L, Wu K M, Hu F, et al. Multi-step isothermal bainitic transformation in medium-carbon steel [J] Scr. Mater., 2014, 74: 56 | [14] | Lindstr?m A. Austempered high silicon steel: Investigation of wear resistance in a carbide free microstructure [D]. Swedish: Lule? University of Technology, 2006 | [15] | Kozeschnik E, Bhadeshia H K D H. Influence of silicon on cementite precipitation in steels [J]. Mater. Sci. Technol., 2008, 24: 343 | [16] | Caballero F G, Garcia-Mateo C, Santofimia M J, et al. New experimental evidence on the incomplete transformation phenomenon in steel [J]. Acta Mater., 2009, 57: 8 | [17] | Caballero F G, Miller M K, Babu S S, et al. Atomic scale observations of bainite transformation in a high carbon high silicon steel [J]. Acta Mater., 2007, 55: 381 | [18] | Caballero F G, Miller M K, Garcia-Mateo C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel [J]. Acta Mater., 2010, 58: 2338 | [19] | Reisner G, Werner E A, Kerschbaummayr P, et al. The modeling of retained austenite in low-alloyed TRIP steels [J]. JOM, 1997, 49(9): 62 | [20] | Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels [J]. Metall. Mater. Trans., 2004, 35A: 2331 | [21] | Matsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel [J]. Trans. ISIJ, 1987, 27: 570 | [22] | Tsai Y T, Chang H T, Huang B M, et al. Microstructural characterization of Charpy-impact-tested nanostructured bainite [J]. Mater. Char., 2015, 107: 63 | [23] | Bai D Q, Di Chiro A, Yue S. Stability of retained austenite in a Nb microalloyed Mn-Si TRIP steel [J]. Mater. Sci. Forum, 1998, 284-286: 253 | [24] | Chen H C, Era H, Shimizu M. Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet [J]. Metall. Trans., 1989, 20A: 437 | [25] | Tsukatani I, Hashimoto S, Inoue T. Effects of silicon and manganese addition on mechanical properties of high strength hot-rolled sheet steel containing retained austenite [J]. ISIJ Int., 1991, 31: 992 | [26] | Matsumura O, Sakuma Y, Takechi H. TRIP and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel [J]. Scr. Metall., 1987, 21: 1301 | [27] | Su Y, Fu R Y, Li L, et al. Fracture mechanism of low carbon TRIP steel with Si [J]. J. Shanghai Univ. (Nat. Sci., 2006, 12: 423 | [27] | (苏 钰, 符仁钰, 李 麟等. 低碳含硅TRIP钢断裂机理的研究 [J]. 上海大学学报(自然科学版), 2006, 12: 423) | [28] | Liu Q, Jiang H T, Tang D, et al. Transformation behavior of retained austenite in TRIP steel under stress-strain [J]. J. Plast. Eng., 2009, 16(1): 156 | [28] | (刘 强, 江海涛, 唐 荻等. TRIP钢中残余奥氏体相变与断裂机制研究 [J]. 塑性工程学报, 2009, 16(1): 156) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|