Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1645-1652    DOI: 10.11900/0412.1961.2020.00445
  研究论文 本期目录 | 过刊浏览 |
核电安全端结构中材料拘束的作用范围
戴悦1, 杨杰1(), 陈浩峰2
1.上海理工大学 能源与动力工程学院 上海市动力工程多相流动与传热重点实验室 上海 200093
2.Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
Effect Range of Material Constraint in Nuclear Safe End Structure
DAI Yue1, YANG Jie1(), CHEN Haofeng2
1.Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2.Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
引用本文:

戴悦, 杨杰, 陈浩峰. 核电安全端结构中材料拘束的作用范围[J]. 金属学报, 2021, 57(12): 1645-1652.
Yue DAI, Jie YANG, Haofeng CHEN. Effect Range of Material Constraint in Nuclear Safe End Structure[J]. Acta Metall Sin, 2021, 57(12): 1645-1652.

全文: PDF(2243 KB)   HTML
摘要: 

分别选择核电安全端实际结构和简化结构为研究对象,对不同材料拘束下2种结构的J积分-弯矩曲线、等效塑性应变(PEEQ)等值线所围绕区域的面积和失效评定曲线进行计算,以考察结构中材料拘束的作用范围。结果表明:在核电安全端实际结构和简化结构中均存在着材料拘束的作用范围。J积分-弯矩曲线、PEEQ等值线所围绕区域的面积和失效评定曲线均不受材料拘束作用范围之外材料的影响。简化结构几何拘束较低、材料拘束作用范围较大、失效评定曲线略高,与实际结构相比,可能会产生非保守的评价结果。

关键词 核电安全端材料拘束作用范围失效评定曲线    
Abstract

Constraint is the resistance of a specimen or structure against plastic deformation that contains geometric and material costraints. Both can affect the fracture behavior of a material significantly. For a material constraint, most studies focused on the strength mismatch of both sides of a crack, such as over-match and under-match. Nevertheless, the effect range of the material constraint also needs to be clarified. In previous studies, the effect range of a material constraint was demonstrated in different specimens. In this study, the actual and simplified nuclear safe end structures were selected. The J-M curves (where J is the J-integral, which reflects the degree of stress and strain concentration at the crack tip due to a wide range of yield; M is the bending moment), the areas surrounded by the equivalent plastic strain (PEEQ) isoline, and the failure assessment curves of the two structures under different material constraints were calculated to determine the effect range of material constraint in structure. The results show that the effect range of a material constraint exists in actual and simplified nuclear safe end structures. The J-M curves, the areas surrounded by the PEEQ isoline, and the failure assessment curves were unaffected by the material located out of the effect range. Compared to the actual nuclear safe end structure, the simplified structure had a lower geometric constraint, a larger material constraint effect range, and a higher failure assessment curve, possibly producing a non-conservative assessment result. Thus, in the design and structure integrity assessment of a nuclear safety end structure and other strength-mismatched structures, the influence of the material constraint effect range should be considered, particularly in the following two aspects. The first aspect is that in the design process, a material with weak properties should be designed out of the material constraint effect range. This can effectively avoid weakening of the structural properties caused by the weaker material. The second is that in the assessment process, the material out of the material constraint effect range does not need to be taken into account. Only the material in the material constraint effect range should be considered, which will reduce the difficulty and workload of an assessment.

Key wordsnuclear safe end    material constraint    effect range    failure assessment curve
收稿日期: 2020-11-04     
ZTFLH:  TH114  
基金资助:国家自然科学基金项目(51975378)
作者简介: 戴 悦,女,1996年生,硕士生
图1  核电安全端实际结构几何和简化结构几何
图2  初始周向裂纹示意图
图3  安全端实际结构和简化结构整体网格划分及裂尖局部网格划分
图4  不同材料拘束下核电安全端实际结构的J积分-弯矩(J-M)曲线
图5  不同材料拘束下不同J积分时与相同J积分时PEEQ等值线所围绕区域的面积(APEEQ)
图6  核电安全端实际结构在不同材料拘束下的失效评定图(FAD)
图7  核电安全端实际结构在不同材料拘束下的极限弯矩载荷(ML)
图8  不同材料拘束下核电安全端简化结构的J-M曲线
图9  不同材料拘束下不同J积分时与相同J积分时的APEEQ
图10  核电安全端简化结构在不同材料拘束下的FAD
图11  核电安全端简化结构在不同材料拘束下的ML
图12  52Mb宽度为100和200 mm时核电安全端实际结构与简化结构FAD的对比(a) W52Mb = 100 mm (b) W52Mb = 200 mm
1 Joch J, Ainsworth R A, Hyde T H. Limit load and J-estimates for idealised problems of deeply cracked welded joints in plane-strain bending and tension [J]. Fatigue Fract. Eng. Mater. Struct., 1993, 16: 1061
2 Burstow M C, Ainsworth R A. Comparison of analytical, numerical and experimental solutions to problems of deeply cracked welded joints in bending [J]. Fatigue Fract. Eng. Mater. Struct., 1995, 18: 221
3 Zhang Z L, Hauge M, Thaulow C. Two-parameter characterization of the near-tip stress fields for a bi-material elastic-plastic interface crack [J]. Int. J. Fract., 1996, 79: 65
4 Betegón C, Peñuelas I. A constraint based parameter for quantifying the crack tip stress fields in welded joints [J]. Eng. Fract. Mech., 2006, 73: 1865
5 Yang J, Wang G Z, Xuan F Z, et al. Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 504
6 Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraints with fracture toughness [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 132
7 Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2014, 115: 296
8 Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties of a dissimilar metal welded joint in nuclear powersystems [J]. Mater. Sci. Eng., 2013, A568: 108
9 Wang H T, Wang G Z, Xuan F Z, et al. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint [J]. Mater. Des., 2013, 44: 179
10 Sarikka T, Ahonen M, Mouginot R, et al. Effect of mechanical mismatch on fracture mechanical behavior of SA 508-Alloy 52 narrow gap dissimilar metal weld [J]. Int. J. Press. Vessels Pip., 2017, 157: 30
11 Fan K, Wang G Z, Tu S T, et al. Geometry and material constraint effects on fracture resistance behavior of bi-material interfaces [J]. Int. J. Fract., 2016, 201: 143
12 Fan K, Wang G Z, Xuan F Z, et al. Effects of work hardening mismatch on fracture resistance behavior of bi-material interface regions [J]. Mater. Des., 2015, 68: 186
13 Fan K, Wang G Z, Xuan F Z, et al. Local fracture resistance behavior of interface regions in a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2015, 136: 279
14 Samal M K, Balani K, Seidenfuss M, et al. An experimental and numerical investigation of fracture resistance behaviour of a dissimilar metal welded joint [J]. Proc. Inst. Mech. Eng., 2009, 223C: 1507
15 Yang F Q, Xue H, Zhao L Y, et al. Effects of welded mechanical heterogeneity on interface crack propagation in dissimilar weld joints [J]. Adv. Mater. Sci. Eng., 2019, 2019: 6593982
16 Lindqvist S, Sarikka T, Ahonen M, et al. The effect of crack path on tearing resistance of a narrow-gap Alloy 52 dissimilar metal weld [J]. Eng. Fract. Mech., 2018, 201: 130
17 Jang C, Lee J, Kim J S, et al. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel [J]. Int. J. Press. Vessels Pip., 2008, 85: 635
18 Yang X Q, Qin H S, Huo L X, et al. 3D constraint state analysis near the crack tip in heterogeneous welded joints [J]. J. Mech. Strength, 2001, 23: 336
18 杨新岐, 秦红珊, 霍立兴等. 非匹配焊接接头中裂纹尖端三维拘束状态分析 [J]. 机械强度, 2001, 23: 336
19 Zhu Z Q, Jing H Y, Ge J G, et al. Effects of strength mis-matching on the fracture behavior of nuclear pressure steel A508-III welded joint [J]. Mater. Sci. Eng., 2005, A390: 113
20 Younise B, Rakin M, Gubeljak N, et al. Effect of material heterogeneity and constraint conditions on ductile fracture resistance of welded joint zones—Micromechanical assessment [J]. Eng. Fail. Anal., 2017, 82: 435
21 Xue H, Ogawa K, Shoji T. Effect of welded mechanical heterogeneity on local stress and strain ahead of stationary and growing crack tips [J]. Nucl. Eng. Des., 2009, 239: 628
22 Khan I A, Bhasin V, Chattopadhyay J, et al. An insight of the structure of stress fields for stationary crack in strength mismatch weld under plane strain mode-I loading—part I: Pure bending specimen [J]. Int. J. Mech. Sci., 2012, 62: 89
23 Khan I A, Bhasin V, Chattopadhyay J, et al. An insight of the structure of stress fields for stationary crack in strength mismatch weld under plane strain mode-I loading—part II: Compact tension and middle tension specimens [J]. Int. J. Mech. Sci., 2014, 87: 281
24 Yang J, Wang L. Effect range of the material constraint—I. Center crack [J]. Materials, 2019, 12: 67
25 Dai Y, Yang J, Wang L. Effect range of the material constraint—II. Interface crack [J]. Metals, 2019, 9: 696.
26 Dai Y, Yang J, Chen H F. Effect range of the material constraint in different strength mismatched laboratory specimens [J]. Appl. Sci., 2020, 10: 2434
27 Dai Y, Yang J, Chen H F. Study on the influence of property mismatch in sandwiched specimens with center crack on material constraint effect range [J]. J. Mech. Strength, 2021, 43: 83
27 戴 悦, 杨 杰, 陈浩峰. 三明治型中心裂纹试样性能失配对材料拘束作用范围的影响研究 [J]. 机械强度, 2021, 43: 83
28 Klecker R, Brust F, Wilkowski G M. NRC leak-before-break (LBB.NRC) analysis method for circumferentially through-wall cracked pipes under axial plus bending loads [R]. Washington, D.C.: U.S. Nuclear Regulatory Commission, 1986
29 R6, revision 4, amendment 11: Assessment of the integrity of structures containing defects [R]. Gloucester, UK: British Energy Generation Limited, 2001
30 Koçak M, Webster S, Janosch J J, et al. FITNET Fitness-for-Service (FFS) Procedure [M]. Vol.1, Geesthacht, Germany: GKSS Research Centre, 2008: 11-1
31 Pan J B, Wang G Z, Xuan F Z, et al. FAD of different welded structures for joining safe end to pipe-nozzle of nuclear pressure vessel [J]. Nucl. Tech., 2017, 40: 050605
31 潘建宾, 王国珍, 轩福贞等. 核压力容器接管安全端不同焊接结构的失效评定图 [J]. 核技术, 2017, 40: 050605
32 Yang J, Wang L. Effect and optimal design of the material constraint in the DMWJ of nuclear power plants [J]. Acta Metall. Sin., 2020, 56: 840
32 杨 杰, 王 雷. 核电站DMWJ中材料拘束的影响与优化 [J]. 金属学报, 2020, 56: 840
[1] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.