|
|
核电安全端结构中材料拘束的作用范围 |
戴悦1, 杨杰1( ), 陈浩峰2 |
1.上海理工大学 能源与动力工程学院 上海市动力工程多相流动与传热重点实验室 上海 200093 2.Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK |
|
Effect Range of Material Constraint in Nuclear Safe End Structure |
DAI Yue1, YANG Jie1( ), CHEN Haofeng2 |
1.Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2.Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK |
引用本文:
戴悦, 杨杰, 陈浩峰. 核电安全端结构中材料拘束的作用范围[J]. 金属学报, 2021, 57(12): 1645-1652.
Yue DAI,
Jie YANG,
Haofeng CHEN.
Effect Range of Material Constraint in Nuclear Safe End Structure[J]. Acta Metall Sin, 2021, 57(12): 1645-1652.
1 |
Joch J, Ainsworth R A, Hyde T H. Limit load and J-estimates for idealised problems of deeply cracked welded joints in plane-strain bending and tension [J]. Fatigue Fract. Eng. Mater. Struct., 1993, 16: 1061
|
2 |
Burstow M C, Ainsworth R A. Comparison of analytical, numerical and experimental solutions to problems of deeply cracked welded joints in bending [J]. Fatigue Fract. Eng. Mater. Struct., 1995, 18: 221
|
3 |
Zhang Z L, Hauge M, Thaulow C. Two-parameter characterization of the near-tip stress fields for a bi-material elastic-plastic interface crack [J]. Int. J. Fract., 1996, 79: 65
|
4 |
Betegón C, Peñuelas I. A constraint based parameter for quantifying the crack tip stress fields in welded joints [J]. Eng. Fract. Mech., 2006, 73: 1865
|
5 |
Yang J, Wang G Z, Xuan F Z, et al. Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 504
|
6 |
Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraints with fracture toughness [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 132
|
7 |
Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2014, 115: 296
|
8 |
Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties of a dissimilar metal welded joint in nuclear powersystems [J]. Mater. Sci. Eng., 2013, A568: 108
|
9 |
Wang H T, Wang G Z, Xuan F Z, et al. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint [J]. Mater. Des., 2013, 44: 179
|
10 |
Sarikka T, Ahonen M, Mouginot R, et al. Effect of mechanical mismatch on fracture mechanical behavior of SA 508-Alloy 52 narrow gap dissimilar metal weld [J]. Int. J. Press. Vessels Pip., 2017, 157: 30
|
11 |
Fan K, Wang G Z, Tu S T, et al. Geometry and material constraint effects on fracture resistance behavior of bi-material interfaces [J]. Int. J. Fract., 2016, 201: 143
|
12 |
Fan K, Wang G Z, Xuan F Z, et al. Effects of work hardening mismatch on fracture resistance behavior of bi-material interface regions [J]. Mater. Des., 2015, 68: 186
|
13 |
Fan K, Wang G Z, Xuan F Z, et al. Local fracture resistance behavior of interface regions in a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2015, 136: 279
|
14 |
Samal M K, Balani K, Seidenfuss M, et al. An experimental and numerical investigation of fracture resistance behaviour of a dissimilar metal welded joint [J]. Proc. Inst. Mech. Eng., 2009, 223C: 1507
|
15 |
Yang F Q, Xue H, Zhao L Y, et al. Effects of welded mechanical heterogeneity on interface crack propagation in dissimilar weld joints [J]. Adv. Mater. Sci. Eng., 2019, 2019: 6593982
|
16 |
Lindqvist S, Sarikka T, Ahonen M, et al. The effect of crack path on tearing resistance of a narrow-gap Alloy 52 dissimilar metal weld [J]. Eng. Fract. Mech., 2018, 201: 130
|
17 |
Jang C, Lee J, Kim J S, et al. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel [J]. Int. J. Press. Vessels Pip., 2008, 85: 635
|
18 |
Yang X Q, Qin H S, Huo L X, et al. 3D constraint state analysis near the crack tip in heterogeneous welded joints [J]. J. Mech. Strength, 2001, 23: 336
|
18 |
杨新岐, 秦红珊, 霍立兴等. 非匹配焊接接头中裂纹尖端三维拘束状态分析 [J]. 机械强度, 2001, 23: 336
|
19 |
Zhu Z Q, Jing H Y, Ge J G, et al. Effects of strength mis-matching on the fracture behavior of nuclear pressure steel A508-III welded joint [J]. Mater. Sci. Eng., 2005, A390: 113
|
20 |
Younise B, Rakin M, Gubeljak N, et al. Effect of material heterogeneity and constraint conditions on ductile fracture resistance of welded joint zones—Micromechanical assessment [J]. Eng. Fail. Anal., 2017, 82: 435
|
21 |
Xue H, Ogawa K, Shoji T. Effect of welded mechanical heterogeneity on local stress and strain ahead of stationary and growing crack tips [J]. Nucl. Eng. Des., 2009, 239: 628
|
22 |
Khan I A, Bhasin V, Chattopadhyay J, et al. An insight of the structure of stress fields for stationary crack in strength mismatch weld under plane strain mode-I loading—part I: Pure bending specimen [J]. Int. J. Mech. Sci., 2012, 62: 89
|
23 |
Khan I A, Bhasin V, Chattopadhyay J, et al. An insight of the structure of stress fields for stationary crack in strength mismatch weld under plane strain mode-I loading—part II: Compact tension and middle tension specimens [J]. Int. J. Mech. Sci., 2014, 87: 281
|
24 |
Yang J, Wang L. Effect range of the material constraint—I. Center crack [J]. Materials, 2019, 12: 67
|
25 |
Dai Y, Yang J, Wang L. Effect range of the material constraint—II. Interface crack [J]. Metals, 2019, 9: 696.
|
26 |
Dai Y, Yang J, Chen H F. Effect range of the material constraint in different strength mismatched laboratory specimens [J]. Appl. Sci., 2020, 10: 2434
|
27 |
Dai Y, Yang J, Chen H F. Study on the influence of property mismatch in sandwiched specimens with center crack on material constraint effect range [J]. J. Mech. Strength, 2021, 43: 83
|
27 |
戴 悦, 杨 杰, 陈浩峰. 三明治型中心裂纹试样性能失配对材料拘束作用范围的影响研究 [J]. 机械强度, 2021, 43: 83
|
28 |
Klecker R, Brust F, Wilkowski G M. NRC leak-before-break (LBB.NRC) analysis method for circumferentially through-wall cracked pipes under axial plus bending loads [R]. Washington, D.C.: U.S. Nuclear Regulatory Commission, 1986
|
29 |
R6, revision 4, amendment 11: Assessment of the integrity of structures containing defects [R]. Gloucester, UK: British Energy Generation Limited, 2001
|
30 |
Koçak M, Webster S, Janosch J J, et al. FITNET Fitness-for-Service (FFS) Procedure [M]. Vol.1, Geesthacht, Germany: GKSS Research Centre, 2008: 11-1
|
31 |
Pan J B, Wang G Z, Xuan F Z, et al. FAD of different welded structures for joining safe end to pipe-nozzle of nuclear pressure vessel [J]. Nucl. Tech., 2017, 40: 050605
|
31 |
潘建宾, 王国珍, 轩福贞等. 核压力容器接管安全端不同焊接结构的失效评定图 [J]. 核技术, 2017, 40: 050605
|
32 |
Yang J, Wang L. Effect and optimal design of the material constraint in the DMWJ of nuclear power plants [J]. Acta Metall. Sin., 2020, 56: 840
|
32 |
杨 杰, 王 雷. 核电站DMWJ中材料拘束的影响与优化 [J]. 金属学报, 2020, 56: 840
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|