|
|
模压变形中国低活化马氏体钢沉淀相对其力学性能的影响 |
薛克敏, 盛杰, 严思梁, 田文春, 李萍( ) |
合肥工业大学 材料科学与工程学院 合肥 230009 |
|
Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing |
XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping( ) |
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China |
引用本文:
薛克敏, 盛杰, 严思梁, 田文春, 李萍. 模压变形中国低活化马氏体钢沉淀相对其力学性能的影响[J]. 金属学报, 2021, 57(7): 903-912.
Kemin XUE,
Jie SHENG,
Siliang YAN,
Wenchun TIAN,
Ping LI.
Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. Acta Metall Sin, 2021, 57(7): 903-912.
1 |
Tan W X. Effect of heat treatment on microstructure and mechanical properties of low activation ferrite/martensitic steels used for the fusion reactor [D]. Wuhan: Huazhong University of Science and Technology, 2011
|
1 |
谭文霞. 聚变堆用低活化钢的热处理改性及微观组织和性能研究 [D]. 武汉: 华中科技大学, 2011
|
2 |
Xu Y P, Lyu Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
|
2 |
徐玉平, 吕一鸣, 周海山等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
|
3 |
Tan L, Hoelzer D T, Busby J T, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels [J]. J. Nucl. Mater., 2012, 422: 45
|
4 |
van der Schaaf B, Tavassoli F, Fazio C, et al. The development of EUROFER reduced activation steel [J]. Fusion Eng. Des., 2003, 69: 197
|
5 |
Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455
|
6 |
Shankar V, Mariappan K, Sandhya R, et al. Long term creep-fatigue interaction studies on India-specific reduced activation ferritic-martensitic (IN-RAFM) steel [J]. Int. J. Fatigue, 2017, 98: 259
|
7 |
Yuan D Q, Ma H L, Fan P, et al. Synergistic effect on formation of radiation damage in CLAM steel studied by triple beam irradiation [J]. Defect Diffus. Forum, 2017, 373: 117
|
8 |
Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment [J]. Metall. Mater. Trans., 2004, 35A: 1255
|
9 |
Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
|
10 |
Liu S J, Huang Q Y, Peng L, et al. Microstructure and its influence on mechanical properties of CLAM steel [J]. Fusion Eng. Des., 2012, 87: 1628
|
11 |
Zhong B Y, Huang B, Li C J, et al. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K [J]. J. Nucl. Mater., 2014, 455: 640
|
12 |
Li M S, Yang S. Effect of heat treatment on the microstructure and properties of 9Cr2WVTa reduced activation steels [A]. Energy Materials Conference Proceedings 2014 [C]. Oxford, England: Blackwell Science Publ., 2014: 551
|
13 |
Aydogan E, Chen T, Gigax J G, et al. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions [J]. J. Nucl. Mater., 2017, 487: 96
|
14 |
Lee S H, Saito Y, Tsuji N, et al. Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 2002, 46: 281
|
15 |
Huang J Y, Zhu Y T, Alexander D J, et al. Development of repetitive corrugation and straightening [J]. Mater. Sci. Eng., 2004, A371: 35
|
16 |
Yang K H, Peng K P, Chen W Z. Microstructural evolution and grain refinement of 1060 pure Al processed by constrained groove pressing [J]. Chin. J. Nonferrous Met., 2011, 21: 3026
|
16 |
杨开怀, 彭开萍, 陈文哲. 限制模压变形1060纯铝的组织演化与晶粒细化 [J]. 中国有色金属学报, 2011, 21: 3026
|
17 |
Shin D H, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum [J]. Mater. Sci. Eng., 2002, A328: 98
|
18 |
Wang Z S. Experimental and numerical study on constrained groove pressing of sheet metals [D]. Jinan: Shandong University, 2014
|
18 |
王宗申. 金属板材限制模压变形工艺的实验与数值模拟研究 [D]. 济南: 山东大学, 2014
|
19 |
Ukai S, Mizuta S, Fujiwara M, et al. Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation [J]. J. Nucl. Sci. Technol., 2002, 39: 778
|
20 |
Wang D, Zhang J, Lou L H. Formation and stability of nano-scaled M23C6 carbide in a directionally solidified Ni-base superalloy [J]. Mater. Charact., 2009, 60: 1517
|
21 |
Shtansky D V, Nakai K, Ohmori Y. Crystallography and structural evolution during reverse transformation in an Fe-17Cr-0.5C tempered martensite [J]. Acta Mater., 2000, 48: 1679
|
22 |
Armaki H G, Chen R P, Maruyama K, et al. Creep behavior and degradation of subgrain structures pinned by nanoscale precipitates in strength-enhanced 5 to 12 pct Cr ferritic steels [J]. Metall. Mater. Trans, 2011, 42A: 3084
|
23 |
Dudova N, Plotnikova A, Molodov D, et al. Structural changes of tempered martensitic 9%Cr-2%W-3%Co steel during creep at 650°C [J]. Mater. Sci. Eng., 2012, A534: 632
|
24 |
Xiao X, Liu G Q, Hu B F, et al. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation [J]. J. Mater. Sci., 2013, 48: 5410
|
25 |
Hughes D A, Hansen N. High angle boundaries formed by grain subdivision mechanisms [J]. Acta Mater., 1997, 45: 3871
|
26 |
Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
|
27 |
Murayama M, Horita Z, Hono K. Microstructure of two-phase Al-1.7at% Cu alloy deformed by equal-channel angular pressing [J]. Acta Mater., 2001, 49: 21
|
28 |
Liu Z Y, Liang G X, Wang E D, et al. Effect of equal-channel angular pressing on structure of Al alloy 2024 [J]. Trans. Nonferrous Met. Soc. China, 1997, 7: 160
|
29 |
Jin X J, Chen S H, Rong L J. Microstructure modification and mechanical property improvement of reduced activation ferritic/martensitic steel by severe plastic deformation [J]. Mater. Sci. Eng., 2018, A712: 97
|
30 |
Apps P J, Bowen J R, Prangnell P B. The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing [J]. Acta Mater., 2003, 51: 2811
|
31 |
Huang W J. Severe plastic deformation induces Al-4wt.%Cu alloy precipitated phase re-dissolution and subsequent aging behavior [D]. Changsha: Central South University, 2012
|
31 |
黄文杰. 强塑性变形诱导Al-4wt.%Cu合金析出相回溶及之后的时效行为研究 [D]. 长沙: 中南大学, 2012
|
32 |
Xu X C, Liu Z Y, Dang P, et al. Mechanism of re-dissolution and re-precipitation of second phases in Al-Zn-Mg-Cu alloy under severe plastic deformation [J]. Mater. Sci. Technol., 2005, 13: 178
|
32 |
许晓嫦, 刘志义, 党 朋等. 室温强塑性变形下回溶和再析出的机理研究 [J]. 材料科学与工艺, 2005, 13: 178
|
33 |
Hu N, Xu X C, Zhang Z Z, et al. Effect of re-dissolution of severely deformed precipitated phase on mechanical properties of Al-Cu alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 1922
|
33 |
胡 楠, 许晓嫦, 张孜昭等. 强变形诱导析出相回溶对Al-Cu合金力学性能的影响 [J]. 中国有色金属学报, 2010, 20: 1922
|
34 |
Mao C L, Liu C X, Yu L M, et al. Mechanical properties and tensile deformation behavior of a reduced activated ferritic-martensitic (RAFM) steel at elevated temperatures [J]. Mater. Sci. Eng., 2018, A725: 283
|
35 |
Foley D C, Hartwig K T, Maloy S A, et al. Grain refinement of T91 alloy by equal channel angular pressing [J]. J. Nucl. Mater., 2009, 389: 221
|
36 |
Sasaki T T, Oh-Ishi K, Ohkubo T, et al. Effect of double aging and microalloying on the age hardening behavior of a Mg-Sn-Zn alloy [J]. Mater. Sci. Eng., 2011, A530: 1
|
37 |
Panait C G, Zielińska-Lipiec A, Koziel T, et al. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600oC for more than 100,000 h [J]. Mater. Sci. Eng., 2010, A527: 4062
|
38 |
Hamada K, Tokuno K, Tomita Y, et al. Effects of precipitate shape on high temperature strength of modified 9Cr-1Mo steels [J]. ISIJ Int., 1995, 35: 86
|
39 |
Ravikirana, Mythili R, Raju S, et al. Influence of W and Ta content on microstructural characteristics in heat treated 9Cr-reduced activation ferritic/martensitic steels [J]. Mater. Charact., 2013, 84: 196
|
40 |
Brooks I, Lin P, Palumbo G, et al. Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials [J]. Mater. Sci. Eng., 2008, A491: 412
|
41 |
Han B Q, Mohamed F A, Lavernia E J. Mechanical properties of iron processed by severe plastic deformation [J]. Metall. Mater. Trans., 2003, 34A: 71
|
42 |
De Messemaeker J, Verlinden B, Van Humbeeck J. On the strength of boundaries in submicron IF steel [J]. Mater. Lett., 2004, 58: 3782
|
43 |
Kashyap B P, Tangri K. Hall-Petch relationship and substructural evolution in boron containing type 316L stainless steel [J]. Acta Mater., 1997, 45: 2383
|
44 |
Liu X D, Nagumo M, Umemoto M. The Hall-Petch relationship in nanocrystalline materials [J]. Mater. Trans., 1997, 38: 1033
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|