|
|
小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究 |
马也飞1,2, 宋竹满2, 张思倩1, 陈立佳1, 张广平2( ) |
1 沈阳工业大学材料科学与工程学院 沈阳 110870 2 中国科学院金属研究所 沈阳 110016 |
|
Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens |
Yefei MA1,2, Zhuman SONG2, Siqian ZHANG1, Lijia CHEN1, Guangping ZHANG2( ) |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
Yefei MA,
Zhuman SONG,
Siqian ZHANG,
Lijia CHEN,
Guangping ZHANG.
Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. Acta Metall Sin, 2018, 54(10): 1359-1367.
[1] | Lu Y G, Zhu R S, Wang X L, et al.Study on gas-liquid two-phase all-characteristics of CAP1400 nuclear main pump[J]. Nucl. Eng. Des., 2017, 319: 140 | [2] | Li Y.Study of unsteady flow and fatigue reliability of the reactor coolant pump's impeller [D]. Shanghai: Shanghai Jiao Tong University, 2009(李颖. 核主泵叶轮非定常流场及疲劳寿命可靠性分析 [D]. 上海: 上海交通大学, 2009) | [3] | Ma G J, Hu G J, Wu C W.Thermal fatigue analysis and life prediction of nuclear pump shaft surface[J]. Chin. J. Solid Mech., 2015, 36(suppl.1): 145(马国军, 胡光举, 吴承伟. 核主泵主轴表面热疲劳分析与寿命评估[J]. 固体力学学报, 2015, 36(增刊1): 145) | [4] | Liu S, Li Z L, Guan Z Q.Analysis on the mechanical-thermal coupling fatigue of the primary pump shaft[J]. China Nucl. Power, 2013, 6: 22(刘松, 李姿琳, 关振群. 核主泵主轴机械-热耦合疲劳分析[J]. 中国核电, 2013, 6: 22) | [5] | Trudel A, Lévesque M, Brochu M.Microstructural effects on the fatigue crack growth resistance of a stainless steel CA6NM weld[J]. Eng. Fract. Mech., 2014, 115: 60 | [6] | Mirakhorli F, Cao X, Pham X T, et al.Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process[J]. Mater. Charact., 2017, 123: 264 | [7] | Ma S Y, Chen R, He X C, et al.Shot peening induced strengthening of the surface layer of martensite stainless Steel 0Cr13Ni4Mo[J]. Acta Metall. Sin., 2005, 41: 28(马素媛, 陈瑞, 贺笑春等. 0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化[J]. 金属学报, 2005, 41: 28) | [8] | Geng C W, He S S, Yu B.Development of martensitic stainless steel ZG0Cr13Ni4Mo[J]. Met. Phys. Examinat. Test., 1992, (4): 13(耿承伟, 何树生, 于波. ZG0Cr13Ni4Mo马氏体不锈钢研制[J]. 物理测试, 1992, (4): 13) | [9] | Wang S X, Jia W, Wang Y L.Effect of nitrogen on mechanical properties of martensitic stainless steel 0Cr13Ni4Mo[J]. Spec. Steel, 2001, 22(5): 23(王淑霞, 贾伟, 王毓麟. 氮对0Cr13Ni4 Mo马氏体不锈钢机械性能的影响[J]. 特殊钢, 2001, 22(5): 23) | [10] | Zhang T, Gao Y P, Tian F, et al.Failure analysis on fracture of 0Cr13Ni4Mo stainless steel shaft of a steam feed pump in a power unit[J]. Phys. Test. Chem. Anal.(Phys. Test.), 2015, 51: 725(张涛, 高云鹏, 田峰等. 电站汽动给水泵0Cr13Ni4Mo不锈钢主轴断裂失效分析[J]. 理化检验(物理分册), 2015, 51: 725) | [11] | Cai Q K, Song B, Gao W Q, et al.Hydrogen-induced failure of 0Cr13Ni4Mo casting steel by aquatic corrosion-fatigue[J]. J. Northeast Univ. Technol., 1987, (2): 202(才庆魁, 宋斌, 高文清等. ZG0Cr13Ni4Mo钢在水介质中腐蚀疲劳过程的氢致开裂分析[J]. 东北工学院学报, 1987, (2): 202) | [12] | Gao Y K, Yin Y F, Li X B.Influence of surface integrity on fatigue property for martensite stainless steel[J]. Heat Treat. Met., 2002, 27(8): 30(高玉魁, 殷源发, 李向斌. 表面完整性对马氏体不锈钢疲劳性能的影响[J]. 金属热处理, 2002, 27(8): 30) | [13] | Winck L B, Ferreira J L A, Araujo J A, et al. Surface nitriding influence on the fatigue life behavior of ASTM A743 steel type CA6NM[J]. Surf. Coat. Technol., 2013, 232: 844 | [14] | Da Silva B L, Oliveira F, Araújo J A, et al. The effect of mean stress on the fatigue behavior of ASTM A743 CA6NM alloy steel [A]. 20th International Congress of Mechanical Engineering[C]. RS: Gramado, 2009: 1 | [15] | Dymá?ek P.Recent developments in small punch testing: Applications at elevated temperatures[J]. Theor. Appl. Fract. Mec., 2016, 86: 25 | [16] | Zhang B, Lei L M, Yang J, et al.Fatigue properties of titanium alloy thin foils for MEMS applications[J]. Mater. Lett., 2012, 89: 302 | [17] | Zhang B, Song Z M, Lei L M, et al.Geometrical scale-sensitive fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys with α/β lamellar microstructures[J]. J. Mater. Sci. Technol., 2014, 30: 1284 | [18] | Zhang G P, Takashima K, Higo Y.Size effects on deformation and fatigue behavior of a micron-sized stainless steel[J]. Acta Metall. Sin., 2005, 41: 337(张广平, 高岛和希, 肥後矢吉. 微米尺寸不锈钢的形变与疲劳行为的尺寸效应[J]. 金属学报, 2005, 41: 337) | [19] | Zhang G P, Takashima K, Shimojo M, et al.Fatigue behavior of microsized austenitic stainless steel specimens[J]. Mater. Lett., 2003, 57: 1555 | [20] | Zhang G P, Wang Z G.Progress in fatigue of small dimensional materials[J]. Acta Metall. Sin., 2005, 41: 1(张广平, 王中光. 小尺度材料的疲劳研究进展[J]. 金属学报, 2005, 41: 1) | [21] | Li H X, Bo C Y, Yang B.Study on repairing process of casting defects for martensitic stainless steel turbine blade[J]. Foundry Eng., 2015, (5): 27(李红霞, 柏长友, 杨保. 马氏体不锈钢水轮机叶片铸造缺陷修补工艺的研究[J]. 铸造工程, 2015, (5): 27) | [22] | Dai C Y, Zhang G P, Yan C.Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philos. Mag., 2011, 91: 932 | [23] | Xu J.Fatigue behavior of FCC-structured metals at micron scales: Effects of length scale and strain gradient [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014(徐进. 微米尺度面心立方金属疲劳行为研究: 尺寸与应变梯度效应 [D]. 沈阳: 中国科学院金属研究所, 2014) | [24] | Suresh S.Fatigue of Materials [M]. 2nd Ed., London: Cambridge University Press, 1998: 161 | [25] | Da Silva B L, De Oliveira F, Sá M V C, et al. Characterization of ASTM A743 CA6NM alloy steel used in hydrogenator components [A]. 21th International Congress of Mechanical Engineering[C]. Natal, RN: Natal, 2007: 1 | [26] | Weiss B, Gr?ger V, Khatibi G, et al.Characterization of mechanical and thermal properties of thin Cu foils and wires[J]. Sen. Actuators, 2002, 99A: 172 | [27] | Demir E, Raabe D.Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending[J]. Acta Mater., 2010, 58: 6055 | [28] | Geers M G D, Brekelmans W A M, Janssen P J M. Size effects in miniaturized polycrystalline FCC samples: Strengthening versus weakening[J]. Int. J. Solids Struct., 2006, 43: 7304 | [29] | Fleck N A, Muller G M, Ashby M F, et al.Strain gradient plasticity: Theory and experiment[J]. Acta Metall. Mater., 1994, 42: 475 | [30] | Huang K Z, Qiu X M, Jiang H Q.Recent advances in strain gradient plasticity-II—Mechanism-based strain gradient (MSG) plasticity[J]. J. Mech. Strength, 1999, 21: 161(黄克智, 邱信明, 姜汉卿. 应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论[J]. 机械强度, 1999, 21: 161) | [31] | Fleck N A, Hutchinson J W.A Phenomenological theory for strain gradient effects in plasticity[J]. J. Mech. Phys. Solids, 1993, 41: 1825 | [32] | Yang J.Mechanical properties of microstructure units in lamellar structured α+β titanium alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017(杨佳. 片层组织α+β钛合金结构单元的力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2017) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|