Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1367-1378    DOI: 10.11900/0412.1961.2019.00051
  研究论文 本期目录 | 过刊浏览 |
低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化
邵毅,李彦默,刘晨曦(),严泽生,刘永长
天津大学材料科学与工程学院水利安全与仿真国家重点实验室 天津 300354
Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe
SHAO Yi ,LI Yanmo ,LIU Chenxi (),YAN Zesheng ,LIU Yongchang
State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China
全文: PDF(35775 KB)   HTML
摘要: 

以使用高频直缝电阻焊连接的低碳铁素体不锈钢焊管为研究对象,对其进行不同温度的退火处理。通过OM、SEM、TEM和拉伸、冲击实验分别研究退火温度对低碳铁素体不锈钢高频直缝电阻焊接头组织和性能的影响。在高频直缝电阻焊过程中,低碳铁素体不锈钢管的焊缝区被迅速加热至奥氏体相区,较高的温度和压力使奥氏体晶粒粗化并发生畸变,空冷后转变为α-铁素体和马氏体组织。焊缝区硬度高约315 HV,而其在0 ℃下冲击值几乎为0。经950 ℃保温3 min退火处理后,焊缝区中马氏体组织全部分解,形成粒状贝氏体和α-铁素体组织,使其硬度降至约260 HV,同时将其在0 ℃下的冲击功从0 J提高至约23 J。

关键词 铁素体不锈钢高频电阻焊退火冲击韧性Vickers硬度    
Abstract

With the development of economy and technology, the application of ferritic stainless steel is becoming increasingly wider. 12Cr ferritic stainless steel has low carbon equivalent and good weldability, and it can not only be applied to a variety of conditions, but also reduce the production cost. High frequency longitudinal resistance welding is an advanced welding technology with high quality and efficiency. In this work, low-carbon ferritic stainless steel pipe has been joined successfully by high frequency longitudinal resistance welding. Microstructure characteristics and mechanical properties of the stainless steel pipe joint after annealing at different temperatures for 3 min were investigated by OM, SEM, TEM and mechanical testing. In the process of high frequency longitudinal resistance welding, the weld zone was heated quickly to a high austenization temperature which led to a coarse grain structure in this zone assisted by high pressure. The weld zone presented martenite and ferrite microstructure with irregular grain. As a result, the hardness of the weld zone reached 315 HV and the impact energy dropped to near zero. After annealing at 950 ℃ for 3 min, the decomposition of martensite was the main reason of the decrease of hardness (260 HV) in weld zone. The microstructure of weld zone was composed of ferrite and bainite, resulting in the increase of impact energy from 0 to 23 J.

Key wordsferritic stainless steel    high frequency resistance welding    annealing    impact toughness    Vickers hardness
收稿日期: 2019-02-26     
ZTFLH:  TG132.33,TG113.25  
基金资助:国家自然科学基金钢铁联合基金重点项目No(U1660201)
通讯作者: 刘晨曦     E-mail: cxliu@tju.edu.cn
Corresponding author: Chenxi LIU     E-mail: cxliu@tju.edu.cn
作者简介: 邵毅,男,1974年生,博士生

引用本文:

邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
SHAO Yi, LI Yanmo, LIU Chenxi, YAN Zesheng, LIU Yongchang. Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe. Acta Metall Sin, 2019, 55(11): 1367-1378.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00051      或      https://www.ams.org.cn/CN/Y2019/V55/I11/1367

图1  低碳铁素体不锈钢的相变曲线和DSC曲线
图2  焊接接头宏观组织的OM像
图3  不同退火温度焊缝区的XRD谱
图4  焊接接头各区域微观组织的OM像
图5  不同退火温度下焊缝区微观组织的OM像
图6  退火处理后焊缝区析出相的表征
图7  不同退火温度下焊缝区析出相的TEM像
图8  不同退火温度下高温热影响区微观组织的OM像
图9  不同退火温度下低温热影响区微观组织的OM像
图10  不同退火温度下母材区微观组织的OM像
图11  不同退火温度下接头各区域的显微硬度
图12  不同退火温度下接头的抗拉强度和延伸率
图13  不同退火温度下拉伸试样断口形貌的SEM像
图14  不同退火温度下接头的冲击值
图15  不同退火温度下冲击试样断口的SEM像
[1] DingM, LiuS S, HaoH, et al. Strength and infrared assessment of spot-welded sheets on ferrite steel [J]. Mater. Des., 2013, 52: 353
[2] ShaoY, LiuC X, YueT X, et al. Effects of static recrystallization and precipitation on mechanical properties of 00Cr12 ferritic stainless steel [J]. Metall. Mater. Trans., 2018, 49B: 1560
[3] ZhangZ H. Study on microstructure and properties of heat affected zone of T4003 ferritic stainless steel [D]. Taiyuan: Taiyuan University of Technology, 2015
[3] 张昭晗. T4003铁素体不锈钢焊接热影响区组织及性能研究 [D]. 太原: 太原理工大学, 2015
[4] ChenM D, ZhangF, LiuZ Y, et al. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater [J]. Acta Metall. Sin., 2018, 54: 1311
[4] 陈闽东, 张 帆, 刘智勇等. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响 [J]. 金属学报, 2018, 54: 1311
[5] LiX F. Properties optimization of 00Cr12Ti automobile steel [J]. Iron Steel, 2004, 39(7): 54
[5] 李学锋. 汽车用00Cr12Ti钢的性能优化 [J]. 钢铁, 2004, 39(7): 54
[6] KhorramiM S, MostafaeiM A, PouraliakbarH, et al. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints [J]. Mater. Sci. Eng., 2014, A608: 35
[7] AmudaM O H, MridhaS. Grain refinement in ferritic stainless steel welds: The journey so far [J]. Adv. Mater. Res., 2010, 83-86: 1165
[8] ZhangZ Z, WuC S. Monte Carlo simulation of grain growth in heat-affected zone of 12 wt.% Cr ferritic stainless steel hybrid welds [J]. Comput. Mater. Sci., 2012, 65: 442
[9] ZhengH B, YeX M, JiangL Z, et al. Study on microstructure of low carbon 12% chromium stainless steel in high temperature heat-affected zone [J]. Mater. Des., 2010, 31: 4836
[10] Van WarmeloM, NolanD, NorrishJ. Mitigation of sensitisation effects in unstabilised 12%Cr ferritic stainless steel welds [J]. Mater. Sci. Eng., 2007, A464: 157
[11] ZhengH, YeX N, LiJ D, et al. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel [J]. Mater. Sci. Eng., 2010, A527: 7407
[12] ZhengH B, YeX N, ZhangX F, et al. Microstructure transformation, grain growth and precipitated phase of 12% Cr ferritic stainless steel in coarse grain zone [J]. Trans. China Weld. Inst., 2011, 32(6): 37
[12] 郑淮北, 叶晓宁, 张雪峰等. 12%Cr铁素体不锈钢粗晶区组织转变和晶粒长大及析出相分析 [J]. 焊接学报, 2011, 32(6): 37
[13] WangL X, SongC J, SunF M, et al. Microstructure and mechanical properties of 12 wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization [J]. Mater. Des., 2009, 30: 49
[14] YangR C, HuT L, MengW, et al. Performance analysis of welded joint on 00Cr12Ti stainless steel [J]. J. Lanzhou Univ. Technol., 2010, 36(4): 13
[14] 杨瑞成, 胡天雷, 孟 威等. 00Cr12Ti不锈钢焊接接头性能分析 [J]. 兰州理工大学学报, 2010, 36(4): 13
[15] ZhangZ H, WangZ B, WangW X, et al. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel [J]. Mater. Des., 2015, 68: 114
[16] TabanE, KalucE, DhoogeA. Hybrid (plasma+gas tungsten arc) weldability of modified 12%Cr ferritic stainless steel [J]. Mater. Des., 2009, 30: 4236
[17] TabanE, DeleuE, DhoogeA, et al. Laser welding of modified 12%Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties [J]. Mater. Des., 2009, 30: 1193
[18] WangR. Effects of microstructure and heat-treatment on grooving corrosion of electric resistance welded pipes [J]. Acta Metall. Sin., 2002, 38: 1281
[18] 王 荣. 显微组织和热处理对直缝电阻焊管沟槽腐蚀的影响 [J]. 金属学报, 2002, 38: 1281
[19] HuL, WangX, YinX H, et al. Influence of inter-pass temperature on residual stress in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes [J]. Acta Metall. Sin., 2018, 54: 1767
[19] 胡 磊, 王 学, 尹孝辉等. 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响 [J]. 金属学报, 2018, 54: 1767
[20] AmudaM O H, MridhaS. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds [J]. Mater. Des., 2013, 47: 365
[21] FuH, MinJ W, ZhaoH S, et al. Improved mechanical properties of aluminum modified ultra-pure 429 ferritic stainless steels after welding [J]. Mater. Sci. Eng., 2019, A749: 210
[22] ChenY Y, ChenQ. Three steps of quality control in the process of high-frequency welded pipe [J]. Weld. Pipe Tube, 2003, 26(2): 53
[22] 陈鹰杨, 陈 勤. 高频焊管生产过程质量控制的三个环节 [J]. 焊管, 2003, 26(2): 53
[23] LoK H, ShekC H, LaiJ K L. Recent developments in stainless steels [J]. Mater. Sci. Eng., 2009, R65: 39
[24] ZhangZ, ZhouY M, BaiY F, et al. Loop structure of HFW intermediate frequency heating treatment effect to heating [J]. Weld. Pipe Tube, 2009, 32(1): 41(张 喆, 周月明, 白云峰等. HFW中频热处理线圈结构对加热效果的影响 [J]. 焊管, 2009, 32(1): 41
[25] ZuoL L, HouX Q. Study on improving the low temperature Charpy impact toughness of HFW weld [J]. Weld. Pipe Tube, 2014, 37(1): 58
[25] 左兰兰, 侯学勤. 提高HFW焊缝低温夏比冲击韧性的研究 [J]. 焊管, 2014, 37(1): 58
[26] YanP, Güng?rO, ThibauxP, et al. Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment [J]. Mater. Sci. Eng., 2011, A528: 8792
[27] WuY T, LiuY C, LiC, et al. Coarsening behavior of γ' precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
[28] QiaoZ X, LiuY C, YuL M, et al. Formation mechanism of granular bainite in a 30CrNi3MoV steel [J]. J. Alloys Compd., 2009, 475: 560
[1] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[2] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[3] 李文涛,王振玉,张栋,潘建国,柯培玲,汪爱英. 电弧复合磁控溅射结合热退火制备Ti2AlC涂层[J]. 金属学报, 2019, 55(5): 647-656.
[4] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[5] 林晓冬,彭群家,韩恩厚,柯伟. 退火对热老化308L不锈钢焊材显微结构的影响[J]. 金属学报, 2019, 55(5): 555-565.
[6] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[7] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[8] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[9] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[10] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[11] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[12] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[13] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[14] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[15] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.