|
|
第一性原理研究反位缺陷对TiAl基合金力学行为的影响 |
吉宗威1,2,3,卢松3,于慧1,4,胡青苗1( ),Vitos Levente3,杨锐1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学院大学 北京 100049 3. Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden 4. 沈阳工业大学信息科学与工程学院 沈阳 110870 |
|
First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys |
Zongwei JI1,2,3,Song LU3,Hui YU1,4,Qingmiao HU1( ),Levente Vitos3,Rui YANG1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden 4. School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
引用本文:
吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
Zongwei JI,
Song LU,
Hui YU,
Qingmiao HU,
Levente Vitos,
Rui YANG.
First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. Acta Metall Sin, 2019, 55(5): 673-682.
[1] | KimY W. Ordered intermetallic alloys, part III: Gamma titanium aluminides[J]. JOM, 1994, 46(7): 30 | [2] | AppelF, BeavenP A, WagnerR. Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides[J]. Acta Metall. Mater., 1993, 41: 1721 | [3] | KimY W. Intermetallic alloys based on gamma titanium aluminide[J]. JOM, 1989, 41(7): 24 | [4] | LipsittH A, ShechtmanD, SchafrikR E. The deformation and fracture of TiAl at elevated temperatures[J]. Metall. Trans., 1975, 6A: 1991 | [5] | AppelF, WagnerR. Microstructure and deformation of two-phase γ-titanium aluminides[J]. Mater. Sci. Eng., 1998, R22: 187 | [6] | ParameswaranV R. High temperature aluminides and intermetallics[J]. JOM, 1992, 44(6): 41 | [7] | TsujimotoT, HashimotoK, NobukiM, et al. Structures and properties of an intermetallic compound TiAl based alloys containing silver[J]. Trans. Jpn. Inst. Met., 1986, 27: 341 | [8] | HallE L, HuangS C. Stoichiometry effects: On the deformation of binary TiAl alloys[J]. J. Mater. Res., 1989, 4: 595 | [9] | HuangS C, HallE L. Plastic deformation and fracture of binary TiAl-base alloys[J]. Metall. Trans., 1991, 22A: 427 | [10] | DaroliaR, LweandowskiJ J, LiuC T, et al. Structural Intermetallics[M]. Warrendale: TMS, 1993: 143 | [11] | AppelF, PaulJ D H, OehringM. Gamma Titanium Aluminide Alloys: Science and Technology[M]. Singapore: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 476 | [12] | JiZ W, LuS, HuQ M, et al. Mapping deformation mechanisms in lamellar titanium aluminide[J]. Acta Mater., 2018, 144: 835 | [13] | VitekV. Structure of dislocation cores in metallic materials and its impact on their plastic behaviour[J]. Prog. Mater. Sci., 1992, 36: 1 | [14] | VítekV. Intrinsic stacking faults in body-centred cubic crystals[J]. Philos. Mag., 1968, 18: 773 | [15] | HartfordJ, Von SydowB, Wahnstr?mG, et al. Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles[J]. Phys. Rev., 1998, 58B: 2487 | [16] | JoósB, RenQ, DuesberyM S. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces[J]. Phys. Rev., 1994, 50B: 5890 | [17] | JoM, KooY M, LeeB J, et al. Theory for plasticity of face-centered cubic metals[J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 6560 | [18] | Van SwygenhovenH, DerletP M, Fr?sethA G. Stacking fault energies and slip in nanocrystalline metals[J]. Nat. Mater., 2004, 3: 399 | [19] | LiW, LuS, KimD, et al. First-principles prediction of the deformation modes in austenitic Fe-Cr-Ni alloys[J]. Appl. Phys. Lett., 2016, 108: 081903 | [20] | WangH Y, ZhangN, WangC, et al. First-principles study of the generalized stacking fault energy in Mg-3Al-3Sn alloy[J]. Scr. Mater., 2011, 65: 723 | [21] | KawabataT, KanaiT, IzumiO. Positive temperature dependence of the yield stress in TiAl L10 type superlattice intermetallic compound single crystals at 293-1273 K[J]. Acta Metall., 1985, 33: 1355 | [22] | HugG, LoiseauA, VeyssièreP. Weak-beam observation of a dissociation transition in TiAl[J]. Philos. Mag., 1988, 57A: 499 | [23] | PaidarV, InuiH, KishidaK, et al. Dislocation dissociation in TiAl alloys[J]. Mater. Sci. Eng., 1997, A233: 111 | [24] | HugG, LoiseauA, LasalmonieA. Nature and dissociation of the dislocations in TiAl deformed at room temperature[J]. Philos. Mag., 1986, 54A: 47 | [25] | SchoeckG, EhmannJ, F?hnleM. Planar dissociations of [101] superdislocations in TiAl: Ab-initio electron theory and generalized peierls-nabarro model[J]. Philos. Mag. Lett., 1998, 78: 289 | [26] | GrégoriF, VeyssièreP. Properties of <011]{111} slip in Al-rich γ-TiAl I. Dissociation, locking and decomposition of <011] dislocations at room temperature[J]. Philos. Mag., 2000, 80A: 2913 | [27] | KumarM, SriramS, SchwartzA J, et al. Weak-beam analysis of dissociated 1/2(112) superdislocations in γ-TiAl[J]. Philos. Mag. Lett., 1999, 79: 315 | [28] | HohenbergP, KohnW. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136: B864 | [29] | VitosL. Total-energy method based on the exact muffin-tin orbitals theory[J]. Phys. Rev., 2001, 64B: 014107 | [30] | VitosL. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications[M]. London: Springer, 2007: 10 | [31] | VitosL, SkriverH L, JohanssonB, et al. Application of the exact muffin-tin orbitals theory: The spherical cell approximation[J]. Comp. Mater. Sci., 2000, 18: 24 | [32] | KumarV, AndersenO K, MookerjeeA. Lectures on Methods of Electronic Structure Calculations[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 1995: 317 | [33] | PerdewJ P, BurkeK, ErnzerhofM. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865 | [34] | KresseG, FurthmüllerJ. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169 | [35] | KresseG, HafnerJ. Ab initio molecular dynamics for open-shell transition metals[J]. Phys. Rev., 1993, 48B: 13115 | [36] | KresseG, FurthmüllerJ. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp. Mater. Sci., 1996, 6: 15 | [37] | KresseG, JoubertD. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758 | [38] | KibeyS, LiuJ B, JohnsonD D, et al. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation[J]. Acta Mater., 2007, 55: 6843 | [39] | WenY F, SunJ. Generalized planar fault energies and mechanical twinning in gamma TiAl alloys[J]. Scr. Mater., 2013, 68: 759 | [40] | EhmannJ, F?hnleM. Generalized stacking-fault energies for TiAl: Mechanical instability of the (111) antiphase boundary[J]. Philos. Mag., 1998, 77A: 701 | [41] | WoodwardC, MaclarenJ M. Planar fault energies and sessile dislocation configurations in substitutionally disordered Ti-Al with Nb and Cr ternary additions[J]. Philos. Mag., 1996, 74A: 337 | [42] | ZhangW J, AppelF. Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys[J]. Mater. Sci. Eng., 2002, A329-331: 649 | [43] | StuckeM A, VasudevanV K, DimidukD M. Deformation behavior of [001] Ti-56Al single crystals[J]. Mater. Sci. Eng., 1995, A192-193: 111 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|