Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 673-682    DOI: 10.11900/0412.1961.2018.00349
  本期目录 | 过刊浏览 |
第一性原理研究反位缺陷对TiAl基合金力学行为的影响
吉宗威1,2,3,卢松3,于慧1,4,胡青苗1(),Vitos Levente3,杨锐1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
3. Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
4. 沈阳工业大学信息科学与工程学院 沈阳 110870
First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys
Zongwei JI1,2,3,Song LU3,Hui YU1,4,Qingmiao HU1(),Levente Vitos3,Rui YANG1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
4. School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(4967 KB)   HTML
摘要: 

采用第一性原理计算方法,计算了二元γ-TiAl基合金的广义层错能(GSFE)随成分的变化,获得了TiAl基合金中孪晶(TW)、普通位错(OD)、超晶格位错(SDI和SDII)等变形模式的形变势垒,分析了在外加应力作用下的变形模式选择,并讨论反位缺陷对二元γ-TiAl基合金塑性的影响。计算结果表明,TiAl反位缺陷能降低以超晶格内禀层错(SISF)为前缘分位错的TW变形模式的势垒,且扩大TW模式开动的剪切应力角度窗口,有利于改善TiAl基合金的塑性。AlTi反位缺陷则反之。AlTi反位缺陷降低了以复杂层错(CSF)为前缘分位错的OD和SDII变形模式的滑移势垒(γEB),而且扩大了它们开动的剪切应力角度窗口,可促进OD和SDII的滑移。由于CSF的滑移势垒比SISF高,因此,相较于以SISF为前缘分位错的TW变形模式,OD及SDII滑移对应的强度较高、塑性较差。计算结果较好地说明了AlTi反位缺陷对TiAl基合金塑性的改善没有TiAl反位缺陷明显的原因。

关键词 反位缺陷TiAl基合金广义层错能塑性变形    
Abstract

Microalloying is an effective approach to improve the mechanical properties of TiAl-based alloys which have been applied as high-temperature structure materials. The antisite defects may be regarded as special alloying elements. However, the detailed information about the effect of antisite defects on mechanical behavior (full slip and twinning), which may be described theoretically by generalized stacking fault energy (GSFE), of TiAl-based alloys are scarce. In this work, the composition dependent GSFEs of off-stoichiometric γ-TiAl were calculated by using the first-principles exact muffin-tin orbitals method in combination with coherent potential approximation. With the calculated GSFE, the energy barriers for various deformation modes including twin (TW), ordinary dislocation (OD), and superlattice dislocation (SDI and SDII) were determined. The selection of the deformation mode under external shear stress with various directions was analyzed. The effects of the TiAl and AlTi antisite defects on the mechanical properties of γ-TiAl were then discussed. The results showed that the TiAl antisite defect decreases the energy barrier for the TW deformation leading by the superlattice intrinsic stacking fault (SISF) partial dislocation and increases the angle window of the applied shear stress within which TW deformation may be activated. Therefore, TiAl antisite defect is expected to improve the plasticity of γ-TiAl. The effect of AlTi antisite defect is opposite. The AlTi antisite defect decreases the energy barriers for the OD and SDII deformations leading by complex stacking fault (CSF) partial dislocation and increases their operating angle window, indicating that AlTi facilitates the slip of OD and SDII. Considering that the energy barrier for CSF is much higher than that for SISF, the plasticity induced by OD and SDII should be lower than that induced by TW. Calculations in this work explain the experimental finding that TiAl antisite defect improves the plasticity of γ-TiAl more significantly than AlTi antisite defect.

Key wordsantisite defect    TiAl-based alloy    generalized stacking fault energy    plastic deformation
收稿日期: 2018-07-27     
ZTFLH:  TG146.2  
基金资助:国家重点基础研究发展计划项目(2014CB644001);国家重点研发计划项目(2016YFB0701301)
通讯作者: 胡青苗     E-mail: qmhu@imr.ac.cn
Corresponding author: Qingmiao HU     E-mail: qmhu@imr.ac.cn
作者简介: 吉宗威,男,1986年生,博士生

引用本文:

吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
Zongwei JI, Song LU, Hui YU, Qingmiao HU, Levente Vitos, Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys. Acta Metall Sin, 2019, 55(5): 673-682.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00349      或      https://www.ams.org.cn/CN/Y2019/V55/I5/673

图1  L10结构TiAl (111)面滑移/孪晶变形模式示意图
图2  TiAl、Ti(Al0.9Ti0.1)和(Ti0.9Al0.1)Al合金中以超晶格内禀层错(SISF)为前缘分位错的变形模式(TW和SDI)对应的广义层错能曲线
图3  TiAl、Ti(Al0.9Ti0.1)和(Ti0.9Al0.1)Al合金中以复杂层错(CSF)为前缘分位错的变形模式(OD和SDII)对应的广义层错能曲线
MethodγSISFγUSISFγCSFγUCSFγTWγUTWγAPBγUAPB
EMTO194393360607170497685810
VASP unrelaxed189375363590179475684787
VASP relaxed[12]181316358560177410657735
VASP relaxed[39]184321355522182409
FLAPW[40]172363667
LKKR[41]123294672
Exp.[22]~77~145
表1  标准化学计量比γ-TiAl的稳定层错能及非稳定层错能
图4  Ti(Al1-mTim)和(Ti1-mAlm)Al合金的稳定层错能随反位缺陷浓度(m)的变化
图5  Ti(Al1-mTim)及(Ti1-mAlm)Al合金的γUSISF、γUCSF、γUAPB和γUTW 随m的变化
图6  γ-TiAl合金中不同变形模式对应的滑移势垒(γEB)随m的变化曲线
图7  前缘分位错SISF和CSF的有效滑移势垒(γˉ)随外加切应力方向(θ)的变化
图8  以SISF为前缘分位错的变形模式TW和SDI的γˉ随θ的变化
图9  以CSF为前缘分位错的变形模式OD和SDII的γˉ随θ的变化
[1] KimY W. Ordered intermetallic alloys, part III: Gamma titanium aluminides[J]. JOM, 1994, 46(7): 30
[2] AppelF, BeavenP A, WagnerR. Deformation processes related to interfacial boundaries in two-phase γ-titanium aluminides[J]. Acta Metall. Mater., 1993, 41: 1721
[3] KimY W. Intermetallic alloys based on gamma titanium aluminide[J]. JOM, 1989, 41(7): 24
[4] LipsittH A, ShechtmanD, SchafrikR E. The deformation and fracture of TiAl at elevated temperatures[J]. Metall. Trans., 1975, 6A: 1991
[5] AppelF, WagnerR. Microstructure and deformation of two-phase γ-titanium aluminides[J]. Mater. Sci. Eng., 1998, R22: 187
[6] ParameswaranV R. High temperature aluminides and intermetallics[J]. JOM, 1992, 44(6): 41
[7] TsujimotoT, HashimotoK, NobukiM, et al. Structures and properties of an intermetallic compound TiAl based alloys containing silver[J]. Trans. Jpn. Inst. Met., 1986, 27: 341
[8] HallE L, HuangS C. Stoichiometry effects: On the deformation of binary TiAl alloys[J]. J. Mater. Res., 1989, 4: 595
[9] HuangS C, HallE L. Plastic deformation and fracture of binary TiAl-base alloys[J]. Metall. Trans., 1991, 22A: 427
[10] DaroliaR, LweandowskiJ J, LiuC T, et al. Structural Intermetallics[M]. Warrendale: TMS, 1993: 143
[11] AppelF, PaulJ D H, OehringM. Gamma Titanium Aluminide Alloys: Science and Technology[M]. Singapore: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 476
[12] JiZ W, LuS, HuQ M, et al. Mapping deformation mechanisms in lamellar titanium aluminide[J]. Acta Mater., 2018, 144: 835
[13] VitekV. Structure of dislocation cores in metallic materials and its impact on their plastic behaviour[J]. Prog. Mater. Sci., 1992, 36: 1
[14] VítekV. Intrinsic stacking faults in body-centred cubic crystals[J]. Philos. Mag., 1968, 18: 773
[15] HartfordJ, Von SydowB, Wahnstr?mG, et al. Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles[J]. Phys. Rev., 1998, 58B: 2487
[16] JoósB, RenQ, DuesberyM S. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces[J]. Phys. Rev., 1994, 50B: 5890
[17] JoM, KooY M, LeeB J, et al. Theory for plasticity of face-centered cubic metals[J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 6560
[18] Van SwygenhovenH, DerletP M, Fr?sethA G. Stacking fault energies and slip in nanocrystalline metals[J]. Nat. Mater., 2004, 3: 399
[19] LiW, LuS, KimD, et al. First-principles prediction of the deformation modes in austenitic Fe-Cr-Ni alloys[J]. Appl. Phys. Lett., 2016, 108: 081903
[20] WangH Y, ZhangN, WangC, et al. First-principles study of the generalized stacking fault energy in Mg-3Al-3Sn alloy[J]. Scr. Mater., 2011, 65: 723
[21] KawabataT, KanaiT, IzumiO. Positive temperature dependence of the yield stress in TiAl L10 type superlattice intermetallic compound single crystals at 293-1273 K[J]. Acta Metall., 1985, 33: 1355
[22] HugG, LoiseauA, VeyssièreP. Weak-beam observation of a dissociation transition in TiAl[J]. Philos. Mag., 1988, 57A: 499
[23] PaidarV, InuiH, KishidaK, et al. Dislocation dissociation in TiAl alloys[J]. Mater. Sci. Eng., 1997, A233: 111
[24] HugG, LoiseauA, LasalmonieA. Nature and dissociation of the dislocations in TiAl deformed at room temperature[J]. Philos. Mag., 1986, 54A: 47
[25] SchoeckG, EhmannJ, F?hnleM. Planar dissociations of [101] superdislocations in TiAl: Ab-initio electron theory and generalized peierls-nabarro model[J]. Philos. Mag. Lett., 1998, 78: 289
[26] GrégoriF, VeyssièreP. Properties of <011]{111} slip in Al-rich γ-TiAl I. Dissociation, locking and decomposition of <011] dislocations at room temperature[J]. Philos. Mag., 2000, 80A: 2913
[27] KumarM, SriramS, SchwartzA J, et al. Weak-beam analysis of dissociated 1/2(112) superdislocations in γ-TiAl[J]. Philos. Mag. Lett., 1999, 79: 315
[28] HohenbergP, KohnW. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136: B864
[29] VitosL. Total-energy method based on the exact muffin-tin orbitals theory[J]. Phys. Rev., 2001, 64B: 014107
[30] VitosL. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications[M]. London: Springer, 2007: 10
[31] VitosL, SkriverH L, JohanssonB, et al. Application of the exact muffin-tin orbitals theory: The spherical cell approximation[J]. Comp. Mater. Sci., 2000, 18: 24
[32] KumarV, AndersenO K, MookerjeeA. Lectures on Methods of Electronic Structure Calculations[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 1995: 317
[33] PerdewJ P, BurkeK, ErnzerhofM. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[34] KresseG, FurthmüllerJ. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
[35] KresseG, HafnerJ. Ab initio molecular dynamics for open-shell transition metals[J]. Phys. Rev., 1993, 48B: 13115
[36] KresseG, FurthmüllerJ. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp. Mater. Sci., 1996, 6: 15
[37] KresseG, JoubertD. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[38] KibeyS, LiuJ B, JohnsonD D, et al. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation[J]. Acta Mater., 2007, 55: 6843
[39] WenY F, SunJ. Generalized planar fault energies and mechanical twinning in gamma TiAl alloys[J]. Scr. Mater., 2013, 68: 759
[40] EhmannJ, F?hnleM. Generalized stacking-fault energies for TiAl: Mechanical instability of the (111) antiphase boundary[J]. Philos. Mag., 1998, 77A: 701
[41] WoodwardC, MaclarenJ M. Planar fault energies and sessile dislocation configurations in substitutionally disordered Ti-Al with Nb and Cr ternary additions[J]. Philos. Mag., 1996, 74A: 337
[42] ZhangW J, AppelF. Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys[J]. Mater. Sci. Eng., 2002, A329-331: 649
[43] StuckeM A, VasudevanV K, DimidukD M. Deformation behavior of [001] Ti-56Al single crystals[J]. Mater. Sci. Eng., 1995, A192-193: 111
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[3] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[4] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[5] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[6] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[7] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[8] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[9] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[10] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[11] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[12] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.
[13] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[14] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[15] 周立初,胡显军,马驰,周雪峰,蒋建清,方峰. 珠光体层片取向对冷拔珠光体钢丝形变的影响*[J]. 金属学报, 2015, 51(8): 897-903.