Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 997-1007    DOI: 10.11900/0412.1961.2018.00428
  本期目录 | 过刊浏览 |
GH4169合金圆盘时效过程残余应力的演化规律研究
秦海龙,张瑞尧,毕中南(),杜洪标,张金辉
1. 钢铁研究总院高温合金新材料北京市重点实验室 北京 100081
2. 北京钢研高纳科技股份有限公司 北京 100081
3. Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK
4. ISIS Neutron Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk
Hailong QIN,Ruiyao ZHANG,Zhongnan BI(),Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG
1. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
2. CISRI-GAONA Co. , Ltd. , Beijing 100081, China
3. Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK
4. ISIS Neutron Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
全文: PDF(13805 KB)   HTML
摘要: 

以固溶水淬后的GH4169合金圆盘为研究对象,采用原位中子衍射法研究了时效热处理中的升温、保温和空冷3个阶段残余应力的演化行为,分析了残余应力的演化规律和松弛机制。考虑到工件内部残余应力对γ″相析出行为的影响,采用了2种无应力标样作为分析应力的基准。结果表明,淬火后圆盘中心的旋向和径向存在340.62 MPa的拉应力,轴向存在-33.34 MPa的压应力。升温阶段,材料屈服强度随温度的升高而降低,部分残余应力通过塑性变形进行释放,圆盘中心旋向/径向残余应力从340.62 MPa降至227.67 MPa。保温阶段,残余应力通过蠕变变形进行释放,随着γ″相逐渐析出,蠕变抗力增大,保温阶段的残余应力松弛主要集中在保温的早期。空冷阶段残余应力基本保持不变。

关键词 高温合金时效残余应力原位中子衍射    
Abstract

GH4169 alloy, a precipitation-strengthened nickel-iron base superalloy, has been widely used in aerospace and energy industries due to its excellent high-temperature strength which derived from the coherent phases (γ″ and γ'). To form these precipitates, the manufacturing process of GH4169 usually involves solid solution heat treatment followed by rapid cooling and double ageing heat treatment. Significant residual stresses are induced during rapid cooling and then partially relieved during the subsequent ageing treatment. However, the reduced residual stress after ageing are still large enough to affect the final machining operations, resulting in the component exceeding the dimensional tolerances if they are not well considered. Furthermore, residual stresses in the final components may lead to further distortion beyond estimation during service, which could deteriorate the engine performances. In the present study, the evolution of residual stresses at heating, isothermal ageing, and air-cooling stages of ageing heat treatment in a GH4169 alloy disk was characterized by in situ neutron diffraction. Considering the effect of residual stresses on the precipitation behavior of γ″, two different types of stress-free samples were used as the basis for the stress analysis. The results show that significant residual stresses were induced during water quenching, which were found to be 340.62 MPa tensile in hoop/radial directions and 33.34 MPa compressive in axial direction in the center of the disk. Subsequently, an in situ ageing heat treatment was undertaken at 720 ℃ for 8 h. During the heating stage, the yield strength of the material decreases with increasing temperature, leading to residual stress relaxation through plastic deformation from 340.62 MPa to 227.67 MPa in hoop/radial direction in the disk center. At the isothermal ageing stage, residual stresses relieved apparently by about 40 MPa during the first 100 min, later on a slower linear relaxation remained for the rest of the ageing heat treatment. The strength of the alloy increased and the creep rate decreased due to the formation of γ″ and γ′ strengthening phases, indicating that most of stress relaxation occurred as a result of creep deformation at the early stage of isothermal ageing. The magnitude of residual stress was almost invariable in the subsequent air-cooling stage.

Key wordssuperalloy    ageing treatment    residual stress    in situ neutron diffraction
收稿日期: 2018-09-07     
ZTFLH:  TG115.23  
基金资助:国家重点研发计划项目((No.2017YFB0702901));国家自然科学基金项目((No.U1708253))
通讯作者: 毕中南     E-mail: bizhongnan21@aliyun.com
Corresponding author: Zhongnan BI     E-mail: bizhongnan21@aliyun.com
作者简介: 秦海龙,男,1989年生,博士

引用本文:

秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
Hailong QIN, Ruiyao ZHANG, Zhongnan BI, Lee Tung Lik, Hongbiao DONG, Jinhui DU, Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk. Acta Metall Sin, 2019, 55(8): 997-1007.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00428      或      https://www.ams.org.cn/CN/Y2019/V55/I8/997

图1  原位中子衍射实验平台的搭建
图2  中子衍射谱仪光路及衍射点位置示意图
图3  无应力s0试样示意图
图4  圆盘D1加热过程中的升温曲线
图5  固溶水淬后圆盘试样微观组织的OM和SEM像
图6  不同保温时间下动态无应力标样和静态无应力标样的TEM明场像

Temperature

Direction

a / nmStrain / 10-6Stress / MPa
ValueErrorValueErrorValueError

20

Hoop/Radial0.3607680.00000751251.6820.82340.6210.01
Axial0.3598960.0000072-1168.4219.98-33.349.88

340

Hoop/Radial0.3624510.00000851373.1023.48321.859.28
Axial0.3614860.0000079-1292.9821.83-60.709.04

530

Hoop/Radial0.3634920.00000911315.1125.07289.739.33
Axial0.3625500.0000085-1279.6922.59-65.718.99

720

Hoop/Radial0.3644280.00001011165.9927.75227.6710.38
Axial0.3635020.0000088-1351.9624.18-77.749.94
表1  升温过程中的晶格常数、应变及残余应力随温度的变化情况
图7  保温时效过程中圆盘中心和无应力标样晶格常数变化曲线
图8  保温时效过程中圆盘中心残余应力演化规律
图9  时效升温、保温和空冷阶段圆盘中心残余应力的演化行为
图10  圆盘中心旋向/径向在时效开始(5 min)和结束(480 min)时的衍射谱及(200)晶面衍射峰分解
图11  应力拟合分析误差随时效时间的变化
图12  不同温度下淬火态GH4169合金的屈服强度
图13  GH4169合金时效保温过程中的组织及性能演化
[1] Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2008: 217
[2] Zhuang J Y, Du J H, Deng Q, et al. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006: 1
[2] (庄景云, 杜金辉, 邓 群等. 变形高温合金GH4169 [M]. 北京: 冶金工业出版社, 2006: 1)
[3] Lu X D, Du J H, Deng Q. High temperature structure stability of GH4169 superalloy [J]. Mater. Sci. Eng., 2013, A559: 623
[4] Du J H, Lu X D, Deng Q, et al. High-temperature structure stability and mechanical properties of novel 718 superalloy [J]. Mater. Sci. Eng., 2007, A452-453: 584
[5] Xie X S, Dong J X, Fu S H, et al. Research and development of γ″ and γ′ strengthened Ni-Fe base superalloy GH4169 [J]. Acta Metall. Sin., 2010, 46: 1289
[5] (谢锡善, 董建新, 付书红等. γ″和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展 [J]. 金属学报, 2010, 46: 1289)
[6] Geng L, Na Y S, Park N K. Continuous cooling transformation behavior of Alloy 718 [J]. Mater. Lett., 1997, 30: 401
[7] Dye D, Conlon K T, Reed R C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 [J]. Metall. Mater. Trans., 2004, 35A: 1703
[8] Rist M A, James J A, Tin S, et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling [J]. Metall. Mater. Trans., 2006, 37A: 459
[9] Withers P J, Bhadeshia H K D K. Residual stress Part 2—Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
[10] Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
[11] Rolph J, Evans A, Paradowska A, et al. Stress relaxation through ageing heat treatment—A comparison between in situ and ex situ neutron diffraction techniques [J]. C. R. Phys., 2012, 13: 307
[12] Xu P G, Tomota Y. Progress in materials characterization technique based on in situ neutron diffraction [J]. Acta Metall. Sin., 2006, 42: 681
[12] (徐平光, 友田阳. 基于原位中子衍射表征技术的进展 [J]. 金属学报, 2006, 42: 681)
[13] Dong P, Wang H, Li J, et al. Residual stress in welded Beryllium ring by neutron diffraction and finite element modeling [J]. At. Energy Sci. Technol., 2015, 49: 2255
[13] (董 平, 王 虹, 李 建等. 铍环焊接残余应力的中子衍射测试与有限元分析 [J]. 原子能科学技术, 2015, 49: 2255)
[14] Collins D M, D' Souza N, Panwisawas C. In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy [J]. Scr. Mater., 2017, 131: 103
[15] Allen A J, Hutchings M T, Windsor C G, et al. Neutron diffraction methods for the study of residual stress fields [J]. Adv. Phys., 1985, 34: 445
[16] Wagner J N, Hofmann M, Wimpory R, et al. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis [J]. Mater. Sci. Eng., 2014, A618: 271
[17] Eto T, Sato A, Mori T. Stress-oriented precipitation of G. P. Zones and θ' in an Al-Cu alloy [J]. Acta Metall., 1978, 26: 499
[18] Li D Y, Chen L Q. Computer simulation of stress-oriented nucleation and growth of θ′ precipitates in Al-Cu alloys [J]. Acta Mater., 1998, 46: 2573
[19] Cheng K Y, Jo C Y, Jin T, et al. Influence of applied stress on the γ′ directional coarsening in a single crystal superalloy [J]. Mater. Des., 2010, 31: 968
[20] Gao M, Harlow D G, Wei R P, et al. Preferential coarsening of γ″ precipitates in Inconel 718 during creep [J]. Metall. Mater. Trans., 1996, 27A: 3391
[21] Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
[22] Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
[23] Santisteban J R, Daymond M R, James J A, et al. ENGIN-X: A third-generation neutron strain scanner [J]. J. Appl. Cryst., 2006, 39: 812
[24] Pawley G S. Unit-cell refinement from powder diffraction scans [J]. J. Appl. Crystallogr., 1981, 14: 357
[25] Denis S, Sj?str?m S, Simon A. Coupled temperature, stress, phase transformation calculation [J]. Metall. Trans., 1987, 18A: 1203
[26] Aba-Perea P E, Pirlinga T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys [J]. Mater. Des., 2016, 89: 856
[27] Oradei-Basile A, Radavich J F. A current TTT diagram for wrought alloy 718 [A]. Superalloys 718, 625 and Various Derivatives [C]. Pittsburgh: Springer, 1991: 325
[28] Wang Y Z, Dong J X, Zhang M C, et al. Stress relaxation behavior and mechanism of AEREX 350 and Waspaloy superalloys [J]. Mater. Sci. Eng., 2016, A678: 10
[29] Hong S J, Chen W P, Wang T W. A diffraction study of the γ″ phase in INCONEL 718 superalloy [J]. Metall. Mater. Trans., 2001, 32A: 1887
[30] Kulawik K, Buffat P A, Kruk A, et al. Imaging and characterization of γ′ and γ″ nanoparticles in Inconel 718 by EDX elemental mapping and FIB—SEM tomography [J]. Mater. Charact., 2015, 100: 74
[31] Liu Y, Qin S W, Zuo X W, et al. Finite element simulation and experimental verification of quenching stress in fully through-hardened cylinders [J]. Acta Metall. Sin., 2017, 53: 733
[31] (刘 玉, 秦盛伟, 左训伟等. 全淬透圆柱件淬火应力的有限元模拟及实验验证 [J]. 金属学报, 2017, 53: 733)
[32] Foss B J, Gray S, Hardy M C, et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000 [J]. Acta Mater., 2013, 61: 2548
[33] Zhang F, Cao W S, Zhang C, et al. Simulation of co-precipitation kinetics of γ′ and γ″ in superalloy 718 [A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications [C]. Pittsburgh: Springer, 2018: 147
[34] Fisk M, Ion J C, Lindgren L E. Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment [J]. Comput. Mater. Sci., 2104, 82: 531
[35] Oblak J M, Paulonis D F, Duvall D S. Coherency strengthening in Ni base alloys hardened by D022γ′ precipitates [J]. Metall. Trans., 1974, 5: 143
[36] Han Y F, Chaturvedi M C. A study of back stress during creep deformation of a superalloy inconel 718 [J]. Mater. Sci. Eng., 1987, 85: 59
[37] Chaturvedi M C, Han Y F. Effect of particle size on the creep rate of superalloy Inconel 718 [J]. Mater. Sci. Eng., 1987, 89: L7
[38] Kuo C M, Yang Y T, Bor H Y, et al. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy [J]. Mater. Sci. Eng., 2009, A510-511: 289
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[3] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[4] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[5] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[6] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[7] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[8] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[9] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[10] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[12] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[13] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[15] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.