|
|
用慢正电子束研究H/He中性束辐照W-ZrC合金中的缺陷演化 |
田雪芬1, 刘翔2, 龚敏1, 张培源1, 王康3, 邓爱红1( ) |
1.四川大学 物理学院 成都 610064 2.核工业西南物理研究院 成都 610041 3.菏泽学院 物理与电子工程学院 菏泽 274015 |
|
Defect Evolution in H/He Neutral Beam Irradiated W-ZrC Alloy Using Positron Annihilation Spectroscopy |
TIAN Xuefen1, LIU Xiang2, GONG Min1, ZHANG Peiyuan1, WANG Kang3, DENG Aihong1( ) |
1.College of Physics, Sichuan University, Chengdu 610064, China 2.Southwestern Institute of Physics, Chengdu 610041, China 3.College of Physics and Electronic Engineering, Heze University, Heze 274015, China |
引用本文:
田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红. 用慢正电子束研究H/He中性束辐照W-ZrC合金中的缺陷演化[J]. 金属学报, 2021, 57(1): 121-128.
Xuefen TIAN,
Xiang LIU,
Min GONG,
Peiyuan ZHANG,
Kang WANG,
Aihong DENG.
Defect Evolution in H/He Neutral Beam Irradiated W-ZrC Alloy Using Positron Annihilation Spectroscopy[J]. Acta Metall Sin, 2021, 57(1): 121-128.
1 |
Tanabe T, Noda N, Nakamura H. Review of high Z materials for PSI applications [J]. J. Nucl. Mater., 1992, 196-198: 11
|
2 |
García-Rosales C. Erosion processes in plasma-wall interactions [J]. J. Nucl. Mater., 1994, 211: 202
|
3 |
Chuyanov V A. ITER EDA project status [J]. J. Nucl. Mater., 1996, 233-237: 4
|
4 |
Causey R, Wilson K, Venhaus T, et al. Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons [J]. J. Nucl. Mater., 1999, 266-269: 467
|
5 |
Janeschitz G. Plasma-wall interaction issues in ITER [J]. J. Nucl. Mater. 2001, 290-293: 1
|
6 |
Wurster S, Gludovatz B, Pippan R. High temperature fracture experiments on tungsten-rhenium alloys [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 692
|
7 |
Rieth M, Dafferner B. Limitations of W and W-1% La2O3 for use as structural materials [J]. J. Nucl. Mater., 2005, 342: 20
|
8 |
Yar M A, Wahlberg S, Bergqvist H, et al. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization [J]. J. Nucl. Mater., 2011, 412: 227
|
9 |
Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 496: 41
|
10 |
Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications [J]. J. Nucl. Mater., 2007, 367-370: 1453
|
11 |
Wang Y K, Miao S, Xie Z M, et al. Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 492: 260
|
12 |
Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
|
13 |
Xie Z M, Zhang T, Liu R, et al. Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys [J]. Int. J. Refract. Met. Hard Mater., 2015, 51: 180
|
14 |
Xie Z M, Liu R, Miao S, et al. High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys [J]. J. Nucl. Mater., 2016, 469: 209
|
15 |
Ding H L, Xie Z M, Fang Q F, et al. Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique [J]. Mater. Sci. Eng., 2018, A716: 268
|
16 |
Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
|
17 |
Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W-ZrC alloys for plasma facing components in fusion devices [J]. Nucl. Mater. Energy, 2018, 16: 191
|
18 |
Liu X, Lian Y, Greuner H, et al. Irradiation effects of hydrogen and helium plasma on different grade tungsten materials [J]. Nucl. Mater. Energy, 2017, 12: 1314
|
19 |
Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
|
20 |
Baldwin M J, Doerner R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165
|
21 |
Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48: 035001
|
22 |
Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J]. J. Nucl. Mater., 2004, 329-323: 1029
|
23 |
Nishijima D, Ye M Y, Ohno N, et al. Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J]. J. Nucl. Mater., 2003, 313-316: 97
|
24 |
Tokunaga K, Fujiwara T, Ezato K, et al. Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials [J]. J. Nucl. Mater., 2009, 390-391: 916
|
25 |
Miyamoto M, Nishijima D, Baldwin M J, et al. Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property [J]. J. Nucl. Mater., 2011, 415(): S657
|
26 |
Wang S J, Chen Z Q, Wang B, et al. Applied Positron Spectroscopy [M]. Wuhan: Hubei Science and Technology Press, 2008: 39
|
26 |
王少阶, 陈志权, 王 波等. 应用正电子谱学 [M]. 武汉: 湖北科学技术出版社, 2008: 39
|
27 |
Yu W Z. Positron Physics and Its Application [M]. Beijing: Science Press, 2002: 441
|
27 |
郁伟中. 正电子物理及其应用 [M]. 北京: 科学出版社, 2002: 441
|
28 |
Van Veen A, Schut H, De Vries J, et al. Analysis of positron profiling data by means of “VEPFIT” [J]. AIP Conf. Proc., 1991, 218: 171
|
29 |
Greuner H, Maier H, Balden M, et al. Investigation of W components exposed to high thermal and high H/He fluxes [J]. J. Nucl. Mater., 2011, 417: 495
|
30 |
Jiang B, Wan F R, Geng W T. Strong hydrogen trapping at helium in tungsten: Density functional theory calculations [J]. Phys. Rev., 2010, 81B: 134112
|
31 |
Iwaoka H, Arita M, Horita Z. Hydrogen diffusion in ultrafine-grained palladium: Roles of dislocations and grain boundaries [J]. Acta Mater., 2016, 107: 168
|
32 |
Ramachandran R, David C, Magudapathy P, et al. Study of defect complexes and their evolution with temperature in hydrogen and helium irradiated RAFM steel using positron annihilation spectroscopy [J]. Fusion Eng. Des., 2019, 142: 55
|
33 |
Myers S M, Besenbacher F, Nørskov J K. Immobilization mechanisms for ion‐implanted deuterium in aluminum [J]. J. Appl. Phys., 1985, 58: 1841
|
34 |
Abramov E, Eliezer D. Hydrogen trapping in helium damaged metals: A theoretical approach [J]. J. Mater. Sci., 1992, 27: 2595
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|