Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 121-128    DOI: 10.11900/0412.1961.2020.00183
  研究论文 本期目录 | 过刊浏览 |
用慢正电子束研究H/He中性束辐照W-ZrC合金中的缺陷演化
田雪芬1, 刘翔2, 龚敏1, 张培源1, 王康3, 邓爱红1()
1.四川大学 物理学院 成都 610064
2.核工业西南物理研究院 成都 610041
3.菏泽学院 物理与电子工程学院 菏泽 274015
Defect Evolution in H/He Neutral Beam Irradiated W-ZrC Alloy Using Positron Annihilation Spectroscopy
TIAN Xuefen1, LIU Xiang2, GONG Min1, ZHANG Peiyuan1, WANG Kang3, DENG Aihong1()
1.College of Physics, Sichuan University, Chengdu 610064, China
2.Southwestern Institute of Physics, Chengdu 610041, China
3.College of Physics and Electronic Engineering, Heze University, Heze 274015, China
引用本文:

田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红. 用慢正电子束研究H/He中性束辐照W-ZrC合金中的缺陷演化[J]. 金属学报, 2021, 57(1): 121-128.
Xuefen TIAN, Xiang LIU, Min GONG, Peiyuan ZHANG, Kang WANG, Aihong DENG. Defect Evolution in H/He Neutral Beam Irradiated W-ZrC Alloy Using Positron Annihilation Spectroscopy[J]. Acta Metall Sin, 2021, 57(1): 121-128.

全文: PDF(5745 KB)   HTML
摘要: 

利用GLADIS中性粒子束辐照设备对W-ZrC (W-0.5%ZrC,质量分数)合金进行纯H中性束辐照、H+6%He (原子分数)中性束辐照。采用Doppler展宽慢正电子束分析(DB-SPBA)和SEM表征样品的空位型缺陷和表面形貌。在相同纯H中性束辐照功率与注量下,Doppler展宽结果表明,辐照表面温度为850℃时,样品中缺陷类型主要为空位与H之比较大的H-V复合体;1000℃的样品不存在缺陷损伤层,这主要是由于缺陷在高温下进行了恢复。SEM结果表明,辐照表面温度为1000℃的样品比850℃的样品表面光滑,表面损伤得到恢复。在相同H+6%He中性束辐照功率与注量下,辐照表面温度为800℃的样品相比700℃的样品,S参数更大,表明辐照表面温度为800℃时,空位型缺陷迁移合并更为明显,空位型缺陷体积更大,样品中的缺陷损伤层更宽,损伤更为严重。

关键词 W-ZrCHH/He正电子湮没    
Abstract

Plasma facing materials (PFMs) in future magnetic fusion devices will face various challenges, such as 14.1 MeV neutron and transmutation gas irradiation at high temperatures. W has been considered as one of the most effective candidates for a PFM in recent years. However, pure W exhibits some drawbacks that limit its applications. Conversely, W-ZrC (W-0.5%ZrC, mass fraction) alloy demonstrates excellent performance, such as a relatively low ductile-brittle transition temperature (DBTT), high ductility, and high strength, which will be particularly useful in future fusion reactors. In this work, the Doppler-broadening slow positron beam analysis (DB-SPBA) and SEM were used to characterize the W-ZrC alloy, which had been irradiated by pure H neutral beam or H+6%He (atomic fraction) neutral beam. In the DB-SPBA, parameters S and W were used to characterize the open volume defects in the samples. Under the pure H neutral beam irradiation, the defects were mainly H-V complexes with a large ratio of vacancy to H in the sample at the surface temperature of 850oC. When the surface temperature of the irradiated sample was 1000oC, there was only one kind of vacancy-type defect without any defect damage layer due to the recovery of defect damage in the sample. The surface morphology was smooth and flat at the irradiated sample surface temperature of 1000oC, and the most of pinhole damage structures disappeared compared to the surface temperature of 850oC. The S value in the sample subjected to the H+6%He neutral beam irradiation at the surface temperature of 800oC was larger than that at 700oC because of the increasing vacancy-type defect volume, and defect types were more complex in the 800oC sample. The defect damage layer in the 800oC sample was wider than that in the 700oC sample. Both the 700oC and 800oC samples presented more than one type of defects, but the sample surface damage was significantly more serious at 800oC.

Key wordsW-ZrC    H    H/He    positron annihilation
收稿日期: 2020-05-28     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(11675114)
作者简介: 田雪芬,女,1990年生,博士生
ParameterValueUnit
Density19.07±0.04g·cm-3
Relative density99.7±0.2%
Average grain size1.03±0.26μm
Hardness6.7±0.2GPa
Ductile-brittle transition temperatureAbout 100oC
Thermal conductivity155±5W·m-1·oC-1
表1  室温下W-ZrC合金样品基本参数
Sample No.Irradiation conditionPower / (MW·m-2)Fluence / m-2Surface temperature / oC
1H103.4×1024850
2H103.4×10241000
3H+6%He86.7×1024700
4H+6%He86.7×1024800
表2  W-ZrC合金样品辐照参数
图1  SRIM模拟H/He中性束辐照W-ZrC后H和He含量、以及对应的损伤随深度分布
图2  不同辐照条件下W-ZrC合金样品的表面SEM像
  图3不同样品的S-E图、拟合参数S随深度的变化图及W-S图
Sample No.S-layer (1)S-layer (2)S-layer (3)
12.22±0.1525.5±2.050.1±5.6
23.78±0.13-64.6±4.5
34.96±0.4552.9±6.174±17
46.2±3.248.8±4.375±10
表3  不同辐照条件下的W-ZrC样品的正电子有效扩散长度 (nm)
1 Tanabe T, Noda N, Nakamura H. Review of high Z materials for PSI applications [J]. J. Nucl. Mater., 1992, 196-198: 11
2 García-Rosales C. Erosion processes in plasma-wall interactions [J]. J. Nucl. Mater., 1994, 211: 202
3 Chuyanov V A. ITER EDA project status [J]. J. Nucl. Mater., 1996, 233-237: 4
4 Causey R, Wilson K, Venhaus T, et al. Tritium retention in tungsten exposed to intense fluxes of 100 eV tritons [J]. J. Nucl. Mater., 1999, 266-269: 467
5 Janeschitz G. Plasma-wall interaction issues in ITER [J]. J. Nucl. Mater. 2001, 290-293: 1
6 Wurster S, Gludovatz B, Pippan R. High temperature fracture experiments on tungsten-rhenium alloys [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 692
7 Rieth M, Dafferner B. Limitations of W and W-1% La2O3 for use as structural materials [J]. J. Nucl. Mater., 2005, 342: 20
8 Yar M A, Wahlberg S, Bergqvist H, et al. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization [J]. J. Nucl. Mater., 2011, 412: 227
9 Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 496: 41
10 Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications [J]. J. Nucl. Mater., 2007, 367-370: 1453
11 Wang Y K, Miao S, Xie Z M, et al. Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 492: 260
12 Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
13 Xie Z M, Zhang T, Liu R, et al. Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys [J]. Int. J. Refract. Met. Hard Mater., 2015, 51: 180
14 Xie Z M, Liu R, Miao S, et al. High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys [J]. J. Nucl. Mater., 2016, 469: 209
15 Ding H L, Xie Z M, Fang Q F, et al. Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique [J]. Mater. Sci. Eng., 2018, A716: 268
16 Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
17 Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W-ZrC alloys for plasma facing components in fusion devices [J]. Nucl. Mater. Energy, 2018, 16: 191
18 Liu X, Lian Y, Greuner H, et al. Irradiation effects of hydrogen and helium plasma on different grade tungsten materials [J]. Nucl. Mater. Energy, 2017, 12: 1314
19 Kajita S, Sakaguchi W, Ohno N, et al. Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions [J]. Nucl. Fusion, 2009, 49: 095005
20 Baldwin M J, Doerner R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165
21 Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48: 035001
22 Nishijima D, Ye M Y, Ohno N, et al. Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II [J]. J. Nucl. Mater., 2004, 329-323: 1029
23 Nishijima D, Ye M Y, Ohno N, et al. Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J]. J. Nucl. Mater., 2003, 313-316: 97
24 Tokunaga K, Fujiwara T, Ezato K, et al. Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials [J]. J. Nucl. Mater., 2009, 390-391: 916
25 Miyamoto M, Nishijima D, Baldwin M J, et al. Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property [J]. J. Nucl. Mater., 2011, 415(): S657
26 Wang S J, Chen Z Q, Wang B, et al. Applied Positron Spectroscopy [M]. Wuhan: Hubei Science and Technology Press, 2008: 39
26 王少阶, 陈志权, 王 波等. 应用正电子谱学 [M]. 武汉: 湖北科学技术出版社, 2008: 39
27 Yu W Z. Positron Physics and Its Application [M]. Beijing: Science Press, 2002: 441
27 郁伟中. 正电子物理及其应用 [M]. 北京: 科学出版社, 2002: 441
28 Van Veen A, Schut H, De Vries J, et al. Analysis of positron profiling data by means of “VEPFIT” [J]. AIP Conf. Proc., 1991, 218: 171
29 Greuner H, Maier H, Balden M, et al. Investigation of W components exposed to high thermal and high H/He fluxes [J]. J. Nucl. Mater., 2011, 417: 495
30 Jiang B, Wan F R, Geng W T. Strong hydrogen trapping at helium in tungsten: Density functional theory calculations [J]. Phys. Rev., 2010, 81B: 134112
31 Iwaoka H, Arita M, Horita Z. Hydrogen diffusion in ultrafine-grained palladium: Roles of dislocations and grain boundaries [J]. Acta Mater., 2016, 107: 168
32 Ramachandran R, David C, Magudapathy P, et al. Study of defect complexes and their evolution with temperature in hydrogen and helium irradiated RAFM steel using positron annihilation spectroscopy [J]. Fusion Eng. Des., 2019, 142: 55
33 Myers S M, Besenbacher F, Nørskov J K. Immobilization mechanisms for ion‐implanted deuterium in aluminum [J]. J. Appl. Phys., 1985, 58: 1841
34 Abramov E, Eliezer D. Hydrogen trapping in helium damaged metals: A theoretical approach [J]. J. Mater. Sci., 1992, 27: 2595
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.
[9] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[10] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[12] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[13] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[14] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[15] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.