Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 111-120    DOI: 10.11900/0412.1961.2020.00186
  研究论文 本期目录 | 过刊浏览 |
放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能
林彰乾1,2, 郑伟3, 李浩1,2, 王东君1,2()
1.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
2.哈尔滨工业大学 金属精密热加工国家级重点实验室 哈尔滨 150001
3.西安航天发动机有限公司 西安 710100
Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering
LIN Zhangqian1,2, ZHENG Wei3, LI Hao1,2, WANG Dongjun1,2()
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
3.Xi'an Space Engine Company Limited, ;Xi'an 710100, China
引用本文:

林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
Zhangqian LIN, Wei ZHENG, Hao LI, Dongjun WANG. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. Acta Metall Sin, 2021, 57(1): 111-120.

全文: PDF(14901 KB)   HTML
摘要: 

采用放电等离子烧结(SPS)方法制备了TA15钛合金,并研究了烧结温度、烧结时间以及烧结压力参数对合金致密化、微观组织与力学性能的影响。结果表明:在烧结温度为800~1200℃、烧结时间为3~7 min、烧结压力为20~50 MPa的烧结条件下,烧结参数对TA15钛合金的物相组成影响不大;合金的微观组织主要由烧结温度决定,并且延长烧结时间会使微观组织发生一定的粗化,而烧结压力对微观组织没有明显的影响。升高烧结温度、延长烧结时间以及适当地增加烧结压力,有助于TA15钛合金致密化过程的进行。烧结态TA15钛合金的室温及高温压缩力学性能由合金的致密度和微观组织共同决定。采用SPS工艺在900℃及50 MPa的烧结条件下,5 min即可获得致密的TA15钛合金,并具有最佳的室温及高温综合力学性能。此外,在900℃、50 MPa和7 min的烧结条件下,采用SPS制备了0.5% (质量分数)石墨烯增强TA15复合材料,与TA15钛合金相比,复合材料室温与高温压缩屈服强度及极限抗压强度得到了明显提高。

关键词 TA15钛合金石墨烯放电等离子烧结微观组织力学性能    
Abstract

Titanium alloys and titanium-based composites are widely used in the field of aerospace owing to their advantages such as low density and high specific strength. Graphene has been found to significantly improve the mechanical properties of metal matrix composites at a lower content due to high modulus, fracture strength, and specific surface area. To achieve excellent mechanical properties, TA15 titanium alloy was fabricated via spark plasma sintering (SPS), and the effects of sintering temperature, sintering time, and sintering pressure on the densification, microstructure, and mechanical properties of the obtained alloys were investigated. The results indicate that the sintering parameters exert trivial effect on the phase composition of the sintered TA15 titanium alloy. The microstructure of the sintered alloy is mainly determined by the sintering temperature, and the prolonged sintering time will cause microstructure coarsening. Meanwhile, the sintering pressure does not have obvious effect on the sintered microstructure. Furthermore, higher sintering temperature, longer sintering time, and accurate increase in sintering pressure contribute to the densification process of TA15 titanium alloy. At room and high temperatures, the comprehensive mechanical properties exhibited by the sintered TA15 titanium alloy are determined by density and microstructure. The dense TA15 titanium alloy can be fabricated via SPS under the sintering conditions of 900oC, 50 MPa, and 5 min. Such alloy exhibits optimally comprehensive mechanical properties at room and high temperatures. Additionally, 0.5% (mass fraction) graphene reinforced TA15 composites were fabricated by SPS under the sintering conditions of 900oC, 50 MPa, and 7 min. When compared with TA15 titanium alloy, the compression yield strength and ultimate compressive strength of composites have significantly improved at room and high temperatures.

Key wordsTA15 titanium alloy    graphene    spark plasma sintering    microstructure    mechanical property
收稿日期: 2020-05-29     
ZTFLH:  TF124  
基金资助:国家自然科学基金项目(51674093)
作者简介: 林彰乾,男,1996年生,硕士生
Sample No.T / oCt / minP / MPaρ / (g·cm-3)
18007504.17
28507504.34
39007504.44
410007504.43
511007504.44
612007504.44
79003504.43
89005504.44
99005204.36
109005354.41
表1  不同烧结参数下TA15钛合金的密度
图1  不同烧结温度下TA15钛合金试样的XRD谱
图2  不同烧结温度下TA15钛合金试样的SEM像(a) No.1 (b) No.2 (c) No.3 (d) No.4 (e) No.5 (f) No.6
图3  不同烧结温度下TA15钛合金试样的压缩力学性能(a) room temperature (b) 500oC
图4  不同烧结时间和烧结压力下TA15钛合金试样的XRD谱和SEM像
Sample No.Room temperature500oC
YS / MPaUCS / MPaδ / %YS / MPaUCS / MPaδ / %
3913.7±3.61475.6±11.225.2±0.1529.9±13.91001.8±35.127.7±0.8
7942.2±19.31536.2±27.020.9±0.6570.2±5.6971.3±12.225.2±1.0
8936.4±11.41641.3±40.025.9±1.1544.1±7.91004.6±31.732.4±1.8
9933.6±11.21413.0±27.417.9±0.9539.6±20.6900.8±35.924.0±0.9
10934.3±9.01449.1±21.518.9±0.7554.1±31.1928.0±30.125.7±0.8
表2  不同烧结时间及烧结压力下TA15钛合金的压缩力学性能
图5  石墨烯增强TA15复合材料的XRD谱、Raman光谱、Raman面扫描、SEM像与压缩力学性能
1 Khanna N, Davim J P. Design-of-experiments application in machining titanium alloys for aerospace structural components [J]. Measurement, 2015, 61: 280
2 Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
3 Singh P, Pungotra H, Kalsi N S. On the characteristics of titanium alloys for the aircraft applications [J]. Mater. Today, 2017, 4: 8971
4 Gao A, Hang R Q, Bai L, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application [J]. Electrochim. Acta, 2018, 271: 699
5 Leyens C, Peters M. Titanium and Titanium Alloys [M]. 2nd Ed., Weinheim: Wiley-VCH, 2003: 2
6 Cheng C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate [J]. Acta Metall. Sin., 2020, 56: 193
6 程 超, 陈志勇, 秦绪山等. TA32钛合金厚板的微观组织、织构与力学性能 [J]. 金属学报, 2020, 56: 193
7 Xu Q D, Li K J, Cai Z P, et al. Effect of pulsed magnetic field on the microstructure of TC4 titanium alloy and its mechanism [J]. Acta Metall. Sin., 2019, 55: 489
7 许擎栋, 李克俭, 蔡志鹏等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究 [J]. 金属学报, 2019, 55: 489
8 Zhu S, Yang H, Guo L G, et al. Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy [J]. Mater. Charact., 2012, 70: 101
9 Sun Y, Luo G Q, Zhang J, et al. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering [J]. J. Alloys Compd., 2018, 741: 918
10 Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 32
11 Sun Q J, Xie X. Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing [J]. Mater. Sci. Eng., 2018, A724: 493
12 Kinloch I A, Suhr J, Lou J, et al. Composites with carbon nanotubes and graphene: An outlook [J]. Science, 2018, 362: 547
13 Santosh M V, Suresh K R, Aithal S K. Mechanical characterization and microstructure analysis of Al C355.0 by sand casting, die casting and centrifugal casting techniques [J]. Mater. Today, 2017, 4: 10987
14 Hodbe G A, Shinde B R. Design and simulation of LM 25 sand casting for defect minimization [J]. Mater. Today, 2018, 5: 4489
15 Azevedo J M C, Serrenho A C, Allwood J M. Energy and material efficiency of steel powder metallurgy [J]. Powder Technol., 2018, 328: 329
16 Patil O M, Khedkar N N, Sachit T S, et al. A review on effect of powder metallurgy process on mechanical and tribological properties of hybrid nano composites [J]. Mater. Today, 2018, 5: 5802
17 Sluzalec A. Stochastic characteristics of powder metallurgy processing [J]. Appl. Math. Model., 2015, 39: 7303
18 Li X P, Yan M, Imai H, et al. The critical role of heating rate in enabling the removal of surface oxide films during spark plasma sintering of Al-based bulk metallic glass powder [J]. J. Non-Cryst. Solids, 2013, 375: 95
19 Bonifacio C S, Holland T B, van Benthem K. Evidence of surface cleaning during electric field assisted sintering [J]. Scr. Mater., 2013, 69: 769
20 Zhang Z H, Liu Z F, Lu J F, et al. The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge [J]. Scr. Mater., 2014, 81: 56
21 Ceja-Cárdenas L, Lemus-Ruíz J, Jaramillo-Vigueras D, et al. Spark plasma sintering of α-Si3N4 ceramics with Al2O3 and Y2O3 as additives and its morphology transformation [J]. J. Alloys Compd., 2010, 501: 345
22 Wang D J, Li H, Wang X S, et al. The microstructure evolution and mechanical properties of TiBw/TA15 composite with network structure prepared by rapid current assisted sintering [J]. Metals, 2019, 9: 540
23 Feng H B, Jia D C, Zhou Y. Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites [J]. Composites, 2005, 36A: 558
24 Wang D J, Yuan H, Qiang J M. The microstructure evolution, mechanical properties and densification mechanism of TiAl-based alloys prepared by spark plasma sintering [J]. Metals, 2017, 7: 201
25 Asl M S, Namini A S, Motallebzadeh A, et al. Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium [J]. Mater. Chem. Phys., 2018, 203: 266
26 Miklaszewski A, Garbiec D, Niespodziana K. Sintering behavior and microstructure evolution in cp-titanium processed by spark plasma sintering [J]. Adv. Powder Technol., 2018, 29: 50
27 Falodun O E, Obadele B A, Oke S R, et al. Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys [J]. J. Alloys Compd., 2018, 736: 202
28 Zhang F M, Wang J, Liu T F, et al. Enhanced mechanical properties of few-layer graphene reinforced titanium alloy matrix nanocomposites with a network architecture [J]. Mater. Des., 2020, 186: 108330
29 Zhao Y, Guo H Z, Shi Z F, et al. Microstructure evolution of TA15 titanium alloy subjected to equal channel angular pressing and subsequent annealing at various temperatures [J]. J. Mater. Process. Technol., 2011, 211: 1364
30 Sun Z C, Yang H, Han G J, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy [J]. Mater. Sci. Eng., 2010, A527: 3464
31 Fan X G, Yang H, Yan S L, et al. Mechanism and kinetics of static globularization in TA15 titanium alloy with transformed structure [J]. J. Alloys Compd., 2012, 533: 1
32 Chen H, Mi G B, Li P J, et al. Effects of graphene oxide on microstructure and mechanical properties of 600oC high temperature titanium alloy [J]. J. Mater. Eng., 2019, 47(9): 38
32 陈 航, 弭光宝, 李培杰等. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响 [J]. 材料工程, 2019, 47(9): 38
33 Cao H C, Liang Y L. The microstructures and mechanical properties of graphene-reinforced titanium matrix composites [J]. J. Alloys Compd., 2020, 812: 152057
34 Dong L L, Chen W G, Deng N, et al. A novel fabrication of graphene by chemical reaction with a green reductant [J]. Chem. Eng. J., 2016, 306: 754
35 Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites [J]. Mater. Sci. Eng., 2017, A687: 164
36 Nagae T, Yokota M, Nose M, et al. Effects of pulse current on an aluminum powder oxide layer during pulse current pressure sintering [J]. Mater. Trans., 2002, 43: 1390
37 Liu R F, Wang W X, Chen H S, et al. Densification of pure magnesium by spark plasma sintering-discussion of sintering mechanism [J]. Adv. Powder Technol., 2019, 30: 2649
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.