Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 283-294    DOI: 10.11900/0412.1961.2020.00165
  综述 本期目录 | 过刊浏览 |
含杂质气态CO2输送管道腐蚀研究进展
李玉星1,2(), 刘兴豪1,2, 王财林1,2, 胡其会1,2, 王婧涵1,2, 马宏涛1,2, 张楠1,2
1.中国石油大学(华东) 山东省油气储运安全省级重点实验室 青岛 266580
2.中国石油天然气股份有限公司 油气储运重点实验室 青岛 266580
Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities
LI Yuxing1,2(), LIU Xinghao1,2, WANG Cailin1,2, HU Qihui1,2, WANG Jinghan1,2, MA Hongtao1,2, ZHANG Nan1,2
1.Provincial Key Laboratory of Oil and Gas Storage and Transportation Security, China University of Petroleum (East China), Qingdao 266580, China
2.Key Laboratory of Oil & Gas Storage and Transportation, PetroChina Company Limited, Qingdao 266580, China
引用本文:

李玉星, 刘兴豪, 王财林, 胡其会, 王婧涵, 马宏涛, 张楠. 含杂质气态CO2输送管道腐蚀研究进展[J]. 金属学报, 2021, 57(3): 283-294.
Yuxing LI, Xinghao LIU, Cailin WANG, Qihui HU, Jinghan WANG, Hongtao MA, Nan ZHANG. Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities[J]. Acta Metall Sin, 2021, 57(3): 283-294.

全文: PDF(1215 KB)   HTML
摘要: 

气态CO2输送管道是CO2捕集与储存(CCS)过程中的重要一环,含杂质气态CO2输送管道的腐蚀控制对于管道的安全运行尤为重要。本文综述了目前含杂质气态CO2输送管道腐蚀的研究成果,总结了气态CO2输送管道腐蚀的影响因素,阐述了杂质与环境条件对水与CO2的互溶度、管道钢腐蚀行为、腐蚀产物膜特征及腐蚀机理的影响,分析了气态CO2输送管道临界含水量的确定,归纳了适用于气态CO2输送管道的腐蚀预测模型。本文指出当前气态CO2输送管道腐蚀研究亟待解决的科学问题包括:含杂质气态CO2环境中水与CO2互溶度的计算;杂质对气态CO2环境中腐蚀产物膜特征及腐蚀机理的影响;含杂质气态CO2输送管道不发生腐蚀临界含水量的确定;含杂质气态CO2输送管道内腐蚀预测模型的建立。

关键词 气态CO2输送腐蚀杂质互溶度临界含水量腐蚀预测模型    
Abstract

Gaseous CO2 transportation pipelines are an important part of carbon capture and storage. Corrosion control of gaseous CO2 transportation pipelines containing impurities is important to the safe operation of pipelines. This paper reviews recent research progress on the corrosion of gaseous CO2 transportation pipelines containing impurities, and the impact factors of gaseous CO2 transportation pipelines are summarized. The influence of pipe impurities and environmental conditions on the mutual solubility of water and CO2, the corrosion behavior of pipelines, the characteristic of corrosion scales, and corrosion mechanism of transportation pipelines are discussed. The determination of critical water content for the corrosion of gaseous CO2 transportation pipelines is analyzed. Predictive corrosion models of gaseous CO2 transportation pipelines are also concluded. For further research on corrosion of gaseous CO2 transportation pipelines containing impurities, the following should be the focal points: the calculation of water and CO2 mutual solubility in gaseous CO2 environments containing impurities, the influence of impurities on corrosion product film characteristics and the corrosion mechanism in a gaseous CO2 environment, the determination of the critical water content of corrosion for gaseous CO2 transportation pipelines containing impurities, and the establishment of inner corrosion prediction models of gaseous CO2 transportation pipelines containing impurities.

Key wordsgaseous CO2 transportation    corrosion    impurity    mutual solubility    critical water content    corrosion prediction model
收稿日期: 2020-05-18     
ZTFLH:  TE988  
基金资助:国家科技重大专项项目(2016ZX05016-002);中国石油天然气股份有限公司油气储运重点实验室项目(GDGS-KJZX-2016-JS-379)
作者简介: 李玉星,男,1970年生,教授,博士
图1  纯CO2相图
Steel

Temperature

oC

Pressure

MPa

H2O contentH2S contentO2 content

Corrosion rate

mm·a-1

Carbon steel[35]402Saturated0.1 MPa00.6223
Carbon steel[35]602Saturated1 MPa00.7706
X65[36]505Saturated000.0186
1000 × 10-60.0435
X65 (Ni-P coating)[36]505Saturated00~0
1000 × 10-60.0093
X65[37]504Saturated00~0.2
6~0.2
X65[38]501Saturated00~1
X65[39]243Saturated001.3077
X70[40]501Saturated000.025
3Cr steel[41]601Saturated000.22
0.950.05 MPa1.36
Low-alloy steel[42]751.2Saturated000.18
Carbon steel[43]603Saturated00~18
5Cr steel[43]~5
13Cr steel[43]~0.2
X65[44,45]354600 × 10-6000.04
60%RH0.05
80%RH0.02
Saturated0.08
表1  近年来气态CO2输送管道腐蚀的研究结果[35~45]
图2  含杂质CO2的相包线[51]
图3  富CO2输送管道最大含水量与压力、温度的关系图[77]
ModelDeveloped byT / ℃P / MPapCO2 / MPa
MinMaxMaxMinMax
LIPUCOR[90]Total2015025-5
KSC[91]IFE515025-5
PREDICT[92,93]InterCorr20200--10
SweetCor[94]Shell5121-0.0217
OLI[95,96]OLI system-50300150-150
表2  适用于气态CO2输送管道的腐蚀速率预测模型[90~96]
1 Hekkert M P, Joosten L A J, Worrell E, et al. Reduction of CO2 emissions by improved management of material and product use: The case of primary packaging [J]. Resour. Conserv. Recy., 2000, 29: 33
2 Wang C L, Li Y X, Teng L, et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines [J]. Exp. Therm. Fluid Sci., 2019, 105: 77
3 IPCC. Carbon Dioxide Capture and Storage [M]. New York: Cambridge University Press, 2005: 1
4 Czernichowski-Lauriol I, Berenblyum R, Bigi S, et al. CO2 GeoNet actions in Europe for advancing CCUS through global cooperation [J]. Energy Procedia, 2018, 154: 73
5 Bhave A, Taylor R H S, Fennell P, et al. Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets [J]. Appl. Energy, 2017, 190: 481
6 Reiner D M. Learning through a portfolio of carbon capture and storage demonstration projects [J]. Nat. Energy, 2016, 1: 15011
7 Gibbins J, Chalmers H. Carbon capture and storage [J]. Energy Policy, 2008, 36: 4317
8 Lilliestam J, Bielicki J M, Patt A G. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers [J]. Energy Policy, 2012, 47: 447
9 Gale J, Davison J. Transmission of CO2-safety and economic considerations [J]. Energy, 2004, 29: 1319
10 Boot-Handford M E, Abanades J C, Anthony E J, et al. Carbon capture and storage update [J]. Energy Environ. Sci., 2014, 7: 130
11 Kruse H, Tekiela M. Calculating the consequences of a CO2-pipeline rupture [J]. Energy Convers. Manage, 1996, 37: 1013
12 Liu Z G, Gao X H, Li J P, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
13 Wang C L, Gu S W, Li Y X, et al. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC J., 2019, 70: 251
13 王财林, 顾帅威, 李玉星等. CO2-原油体系发泡特性实验研究 [J]. 化工学报, 2019, 70: 251
14 Lovseth S W, Skaugen G, Stang H G J, et al. CO2 mix project: Experimental determination of thermo physical properties of CO2-rich mixtures [J]. Energy Procedia, 2013, 37: 2888
15 Vandeginste V, Piessens K. Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle [J]. Int. J. Greenhouse Gas Control, 2008, 2: 571
16 Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)—A review [J]. Int. Mater. Rev., 2017, 62: 1
17 Lone S, Cockerill T, Macchietto S. The techno-economics of a phased approach to developing a UK carbon dioxide pipeline network [J]. J. Pipeline Eng., 2010, 9: 225
18 Sandana D, Hadden M, Race J, et al. Transport of gaseous and dense carbon dioxide in pipelines: is there an internal corrosion risk? [J]. J. Pipeline Eng., 2012, 11: 229
19 Qi G L. Research on CO2 pipeline and liquid separation project of Qilu Petrochemical to Zhenglizhuang oilfield [D]. Qingdao: China University of Petroleum (East China), 2014
19 亓冠玲. 齐鲁二化厂至正理庄油田高89地区CO2输送管道及液化分离工程方案研究 [D]. 青岛: 中国石油大学(华东), 2014
20 Xie S X, Han P H, Qian Y. A pilot test and research on oil displacement by injecting CO2 in eastern Sanan of Daqing oilfield [J]. Oil Gas Recov. Technol., 1997, 4(3): 13
20 谢尚贤, 韩培慧, 钱 昱. 大庆油田萨南东部过渡带注CO2驱油先导性矿场试验研究 [J]. 油气采收率技术, 1997, 4(3): 13
21 Division of Social Development Science and Technology, Ministry of Science and Technology Development, Department of International Cooperation, Ministry of Science and Technology, China Agenda 21 Management Center. Carbon capture, utilization and storage technology development in China [R]. Beijing, 2011
21 科学技术部社会发展科技司, 科学技术部国际合作司, 中国21世纪议程管理中心. 中国碳捕集、利用与封存(CCUS)技术进展报告 [R]. 北京, 2011
22 Johnson K, Holt H, Helle K, et al. Mapping of potential HSE issues related to large-scale capture, transport and storage of CO2 [R]. Horvik: Det Norsk Veritas, 2008
23 Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
24 Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines [J]. Int. J. Greenhouse Gas Control, 2013, 17: 534
25 Sun C, Sun J B, Wang Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 193
26 Hua Y, Barker R, Neville A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments [J]. Appl. Surf. Sci., 2015, 356: 499
27 Sun J B, Sun C, Wang Y. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system [J]. Ind. Eng. Chem. Res., 2018, 57: 2365
28 Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. J. Supercrit. Fluids, 2011, 58: 286
29 Hua Y, Barker R, Neville A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2 [J]. Int. J. Greenhouse Gas Control, 2015, 37: 412
30 Sun C, Sun J B, Wang Y, et al. Effect of impurity interaction on the corrosion film characteristics and corrosion morphology evolution of X65 steel in water-saturated supercritical CO2 system [J]. Int. J. Greenhouse Gas Control, 2017, 65: 117
31 Hua Y, Jonnalagadda R, Zhang L, et al. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2 [J]. Int. J. Greenhouse Gas Control, 2017, 64: 126
32 Hua Y, Neville A, Barker R. Corrosion behaviour of X65 steels in water-containing supercritical CO2 environments with NO2/O2 [A]. NACE Corrosion 2018 Conference and Expo. 2018 [C]. Phoenix: National Association of Corrosion Engineers, 2018: 11085
33 Wei L, Pang X L, Gao K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments [J]. Corros. Sci., 2016, 103: 132
34 Yu C, Wang H W, Gao X H. Corrosion behavior of carbon steel with pearlite-ferrite microstructure in water-saturated supercritical H2S/CO2 environment [J]. Int. J. Electrochem. Sci., 2018, 13: 6059
35 Zhang G A, Zeng Y, Guo X P, et al. Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment [J]. Corros. Sci., 2012, 65: 37
36 Sun C, Sun J B, Luo J L. Unlocking the impurity-induced pipeline corrosion based on phase behavior of impure CO2 streams [J]. Corros. Sci., 2020, 165: 108367
37 Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
38 Zhang Y C, Pang X L, Qu S P, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]. Corros. Sci., 2012, 59: 186
39 Almeida T D C, Bandeira M C E, Moreira R M, et al. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
40 Wei L, Pang X L, Zhou M, et al. Effect of exposure angle on the corrosion behavior of X70 steel under supercritical CO2 and gaseous CO2 environments [J]. Corros. Sci., 2017, 121: 57
41 Lin X Q, Liu W, Wu F, et al. Effect of O2 on corrosion of 3Cr steel in high temperature and high pressure CO2-O2 environment [J]. Appl. Surf. Sci., 2015, 329: 104
42 Liu Z G, Gao X H, Du L X, et al. Corrosion behavior of low-alloy steel with martensite/ferrite microstructure at vapor-saturated CO2 and CO2-saturated brine conditions [J]. Appl. Surf. Sci., 2015, 351: 610
43 Hassani S, Vu T N, Rosli N R, et al. Wellbore integrity and corrosion of low alloy and stainless steels in high pressure CO2 geologic storage environments: An experimental study [J]. Int. J. Greenhouse Gas Control, 2014, 23: 30
44 Jiang X, Qu D R, Song X L, et al. Critical water content for corrosion of X65 mild steel in gaseous, liquid and supercritical CO2 stream [J]. Int. J. Greenhouse Gas Control, 2019, 85: 11
45 Jiang X, Qu D R, Song X L, et al. Impact of water content on corrosion behavior of CO2 transportation pipeline [A]. NACE Corrosion 2015 Conference and Expo. 2015 [C]. Dallas: NACE International, 2015: 5844
46 Russick E M, Poulter G A, Adkins C L J, et al. Corrosive effects of supercritical carbon dioxide and cosolvents on metals [J]. J. Supercrit. Fluids, 1996, 9: 43
47 Zhang Y C, Gao K W, Schmitt G. Effect of water on steel corrosion under supercritical CO2 conditions [J]. Mater. Performance, 2011, 50: 62
48 DeWaard C, Milliams D E. Prediction of carbonic acid corrosion in natural gas pipelines [A]. First International Conference on the Internal and External Protection of Pipes [C]. UK: University of Durham, 1975: 28
49 Spycher K, Pruess K, Ennis-King J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 1000oC and up to 600 bar [J]. Geochim. Cosmochim. Acta, 2003, 67: 3015
50 Foltran S, Vosper M E, Suleiman N B, et al. Understanding the solubility of water in carbon capture and storage mixtures: An FTIR spectroscopic study of H2O+CO2 +N2 ternary mixtures [J]. Int. J. Greenhouse Gas Control, 2015, 35: 131
51 Gu S W, Teng L, Li Y X, et al. Propagation characteristic of decompression wave for gaseous CO2 in pipeline containing impurities [J]. Petrochem. Technol., 2018, 47: 689
51 顾帅威, 滕 霖, 李玉星等. 含杂质气态CO2管道减压波传播特性 [J]. 石油化工, 2018, 47: 689
52 Zeng Y M, Arafin M, Shi C, et al. Influence of impurity hydrogen sulfide on the corrosion performance of pipeline steels in supercritical carbon dioxide stream [A]. NACE Corrosion 2016 Conference and Expo. 2016 [C]. Vancouver: NACE International, 2016: 7223
53 Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems [J]. Corros. Sci., 2016, 111: 637
54 Farelas F, Choi Y S, Nesic S. Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid CO2 phases in the presence of H2O and SO2 [J]. Corrosion, 2013, 69: 243
55 Dugstad A, Halseid M, Morland B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines [J]. Energy Procedia, 2013, 37: 2877
56 Tang Y, Guo X P, Zhang G A. Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology [J]. Corros. Sci., 2017, 118: 118
57 Sun J B, Sun C, Zhang G A, et al. Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 31
58 Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
59 Hua Y, Barker R, Neville A. Understanding the influence of SO2 and O2 on the corrosion of carbon steel in water-saturated supercritical CO2 [J]. Corrosion, 2015, 71: 667
60 Xiang Y, Xu M H, Choi Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: Mechanisms and models [J]. Corros. Eng. Sci. Technol., 2017, 52: 485
61 Choi Y S, Nešić S. Corrosion behavior of carbon steel in supercritical CO2-water environments [A]. NACE Corrosion 2009 Conference and Expo. 2009 [C]. Atlanta: NACE International, 2009: 09256
62 Seiersten M. Materials selection for separation, transportation and disposal of CO2 [A]. NACE Corrosion 2001 Conference and Expo. 2001 [C]. Houston: NACE International, 2001: 01042
63 Tan J, Chan K S. Understanding Advanced Physical Inorganic Chemistry: The Learner's Approach [M]. Singapore: World Scientific Publishing Company, 2010: 1
64 Dugstad A. Fundamental aspects of CO2 metal loss corrosion, part I: mechanism [A]. NACE Corrosion 2006 Conference and Expo. 2006 [C]. San Diego: NACE International, 2006: 6111
65 Zhang Z, Hinkson D, Singer M, et al. A mechanistic model of top-of-the-line corrosion [J]. Corrosion, 2007, 63: 1051
66 Qu S P, Li X, Gao K W, et al. The effect of exposure angle on the corrosion behavior of low-carbon microalloyed steel under CO2 conditions [J]. Corrosion, 2015, 71: 343
67 Zhang J, Wang Z L, Wang Z M, et al. Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2-enhanced oil recovery brines [J]. Corros. Sci., 2012, 65: 397
68 Tran T, Brown B, Nesic S. Corrosion of mild steel in an aqueous CO2 environment—Basic electrochemical mechanisms revisited [A]. NACE Corrosion 2015 Conference and Expo. 2015 [C]. Dallas: NACE International, 2015: 5671
69 Ma H Y, Yang C, Li G Y, et al. Influence of nitrate and chloride ions on the corrosion of iron [J]. Corrosion., 2003, 59: 1112
70 Liu Q Y, Mao L J, Zhou S W. Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments [J]. Corros. Sci., 2014, 84: 165
71 Gao K W, Yu F, Pang X L, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates [J]. Corros. Sci., 2008, 50: 2796
72 Liu D. Corrosion behavior of carbon steel under dynamic supercritical CO2 environment [D]. Wuhan: Huazhong University of Science and Technology, 2015
72 刘 丹. 动态条件下碳钢在超临界CO2环境中腐蚀机理研究 [D]. 武汉: 华中科技大学, 2015
73 Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model [A]. SPE International Symposium on Oilfield Corrosion [C]. Aberdeen: Society of Petroleum Engineers, 2004: 87555
74 Schmitt G A, Mueller M. Critical wall shear stresses in CO2 corrosion of carbon steel [A]. NACE Corrosion 1999 Conference [C]. San Antonio: NACE International, 1999: 44
75 Wei L. Study of corrosion mechanism of steels in supercritical CO2 environments [D]. Beijing: University of Science and Technology Beijing, 2016
75 魏 亮. 钢在超临界CO2环境中腐蚀机制的研究 [D]. 北京: 北京科技大学, 2016
76 Pfennig A, Kranzmann A. Effect of CO2 and pressure on the stability of steels with different amounts of chromium in saline water [J]. Corros. Sci., 2012, 65: 441
77 Li Y X, Liu M S, Zhang J. Impacts of gas impurities on the security of CO2 pipelines [J]. Nat. Gas Ind., 2014, 34: 108
77 李玉星, 刘梦诗, 张 建. 气体杂质对CO2管道输送系统安全的影响 [J]. 天然气工业, 2014, 34: 108
78 De Visser E, Hendriks C, Barrio M, et al. DYNAMIS CO2 quality recommendations [J]. Int. J. Greenhouse Gas Control, 2008, 2: 478
79 McGrail B P, Schaef H T, Glezakou V A, et al. Water reactivity in the liquid and supercritical CO2 phase: Has half the story been neglected? [J]. Energy Procedia, 2009, 1: 3415
80 Mohitpour M, Golshan H, Murray A. Pipeline Design & Construction: A Practical Approach [M]. 2nd Ed., New York: American Society of Mechanical Engineers, 2003
81 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review [J]. Corros. Sci., 2007, 49: 4308
82 Nyborg R. Overview of CO2 corrosion models for wells and pipelines [A]. NACE Corrosion 2002 Conference and Expo. 2002 [C]. Denver: NACE International, 2002: 2233
83 Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 1: Theory and verification [J]. Corrosion, 2003, 59: 443
84 Nešić S, Nordsveen M, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 2: A numerical experiment [J]. Corrosion, 2003, 59: 489
85 Nešić S, Lee K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model [J]. Corrosion, 2003, 59: 616
86 Zhang Y, Gao K, Schmitt G, et al. Modeling steel corrosion under supercritical CO2 conditions [J]. Mater. Corros., 2013, 64: 478
87 Kongshaug K O, Seiersten M. Baseline experiments for the modeling of corrosion at high CO2 pressure [A]. NACE Corrosion 2004 Conference and Expo. 2004 [C]. New Orleans: NACE International, 2004: 4630
88 Thomas D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations [M]. 2nd Ed., Amsterdam: Elsevier Science Ltd, 2005: 937
89 Xiang Y, Wang Z, Xu M H, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2-H2O environments [J]. J. Supercrit. Fluids, 2013, 82: 1
90 Gunaltun Y M. Combining research and field data for beorrosion rate prediction [A]. NACE Corrosion 1996 Conference [C]. Denver: NACE International, 1996: 96027
91 Nesic S, Nordsveen M, Nyborg R, et al. A mechanistic model for CO2 corrosion with protective iron carbonate films [A]. NACE Corrosion 2001 Conference and Expo. 2001 [C]. Houston: NACE International, 2001: 01040
92 Srinivasan S, Kane R D. Prediction of corrosivity of CO2/H2S production environments [A]. NACE Corrosion 1996 Conference [C]. Denver: NACE International, 1996: 11
93 Srinivasan S, Tebbal S. Critical factors in predicting CO2/H2S corrosion in multiphase systems [A]. NACE Corrosion 1998 Conference [C]. San Diego: NACE International, 1998: 38
94 John R C, Jordan K G, Kapusta S D, et al. SweetCor: an information system for the analysis of corrosion of steels by water and carbon dioxide [A]. NACE Corrosion 1998 Conference [C]. San Diego: NACE International, 1998: 20
95 Anderko A M, Young R D. Simulation of CO2/H2S corrosion using thermodynamic and electrochemical models [A]. NACE Corrosion 1999 Conference [C]. San Antonio: NACE International, 1999: 31
96 Anderko A M. Simulation of FeCO3/FeS scale formation using thermodynamic and electrochemical models [A]. NACE Corrosion 2002 Conference [C]. Orlando: NACE International, 2002: 102
97 Choi Y S, Hassani S, Vu T N, et al. Development of a prediction model for high pCO2 corrosion of mild steel [A]. NACE Corrosion 2019 Conference and Expo. 2019 [C]. Nashville: NACE International, 2019: 13157
98 Duan Z H, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar [J]. Chem. Geol., 2003, 193: 257
99 Duan Z H, Sun R, Zhu C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42- [J]. Mar. Chem., 2006, 98: 131
100 Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc., 1918, 40: 1361
101 Carey J W, Wigand M, Chipera S J, et al. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA [J]. Int. J. Greenhouse Gas Control, 2007, 1: 75
102 Carey J W, Svec R, Grigg R, et al. Experimental investigation of wellbore integrity and CO2-brine flow along the casing-cement microannulus [J]. Int. J. Greenhouse Gas Control, 2010, 4: 272
103 Crow W, Williams D B, Carey J W, et al. Wellbore integrity analysis of a natural CO2 producer [J]. Energy Procedia, 2009, 1: 3561
104 Han J B, Carey J W, Zhang J S. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO2-saline environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 777
105 Pitzer K S. Activity Coefficients in Electrolyte Solutions [M]. 2nd Ed., Boston: CRC Press, 1991: 75
106 Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52: 280
107 Li Q, Cheng Y F. Modeling of corrosion of steel tubing in CO2 storage [J]. Greenhouse Gas.: Sci. Technol., 2016, 6: 797
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[6] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.