|
|
含杂质气态CO2输送管道腐蚀研究进展 |
李玉星1,2( ), 刘兴豪1,2, 王财林1,2, 胡其会1,2, 王婧涵1,2, 马宏涛1,2, 张楠1,2 |
1.中国石油大学(华东) 山东省油气储运安全省级重点实验室 青岛 266580 2.中国石油天然气股份有限公司 油气储运重点实验室 青岛 266580 |
|
Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities |
LI Yuxing1,2( ), LIU Xinghao1,2, WANG Cailin1,2, HU Qihui1,2, WANG Jinghan1,2, MA Hongtao1,2, ZHANG Nan1,2 |
1.Provincial Key Laboratory of Oil and Gas Storage and Transportation Security, China University of Petroleum (East China), Qingdao 266580, China 2.Key Laboratory of Oil & Gas Storage and Transportation, PetroChina Company Limited, Qingdao 266580, China |
引用本文:
李玉星, 刘兴豪, 王财林, 胡其会, 王婧涵, 马宏涛, 张楠. 含杂质气态CO2输送管道腐蚀研究进展[J]. 金属学报, 2021, 57(3): 283-294.
Yuxing LI,
Xinghao LIU,
Cailin WANG,
Qihui HU,
Jinghan WANG,
Hongtao MA,
Nan ZHANG.
Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities[J]. Acta Metall Sin, 2021, 57(3): 283-294.
1 |
Hekkert M P, Joosten L A J, Worrell E, et al. Reduction of CO2 emissions by improved management of material and product use: The case of primary packaging [J]. Resour. Conserv. Recy., 2000, 29: 33
|
2 |
Wang C L, Li Y X, Teng L, et al. Experimental study on dispersion behavior during the leakage of high pressure CO2 pipelines [J]. Exp. Therm. Fluid Sci., 2019, 105: 77
|
3 |
IPCC. Carbon Dioxide Capture and Storage [M]. New York: Cambridge University Press, 2005: 1
|
4 |
Czernichowski-Lauriol I, Berenblyum R, Bigi S, et al. CO2 GeoNet actions in Europe for advancing CCUS through global cooperation [J]. Energy Procedia, 2018, 154: 73
|
5 |
Bhave A, Taylor R H S, Fennell P, et al. Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets [J]. Appl. Energy, 2017, 190: 481
|
6 |
Reiner D M. Learning through a portfolio of carbon capture and storage demonstration projects [J]. Nat. Energy, 2016, 1: 15011
|
7 |
Gibbins J, Chalmers H. Carbon capture and storage [J]. Energy Policy, 2008, 36: 4317
|
8 |
Lilliestam J, Bielicki J M, Patt A G. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers [J]. Energy Policy, 2012, 47: 447
|
9 |
Gale J, Davison J. Transmission of CO2-safety and economic considerations [J]. Energy, 2004, 29: 1319
|
10 |
Boot-Handford M E, Abanades J C, Anthony E J, et al. Carbon capture and storage update [J]. Energy Environ. Sci., 2014, 7: 130
|
11 |
Kruse H, Tekiela M. Calculating the consequences of a CO2-pipeline rupture [J]. Energy Convers. Manage, 1996, 37: 1013
|
12 |
Liu Z G, Gao X H, Li J P, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
|
13 |
Wang C L, Gu S W, Li Y X, et al. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC J., 2019, 70: 251
|
13 |
王财林, 顾帅威, 李玉星等. CO2-原油体系发泡特性实验研究 [J]. 化工学报, 2019, 70: 251
|
14 |
Lovseth S W, Skaugen G, Stang H G J, et al. CO2 mix project: Experimental determination of thermo physical properties of CO2-rich mixtures [J]. Energy Procedia, 2013, 37: 2888
|
15 |
Vandeginste V, Piessens K. Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle [J]. Int. J. Greenhouse Gas Control, 2008, 2: 571
|
16 |
Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)—A review [J]. Int. Mater. Rev., 2017, 62: 1
|
17 |
Lone S, Cockerill T, Macchietto S. The techno-economics of a phased approach to developing a UK carbon dioxide pipeline network [J]. J. Pipeline Eng., 2010, 9: 225
|
18 |
Sandana D, Hadden M, Race J, et al. Transport of gaseous and dense carbon dioxide in pipelines: is there an internal corrosion risk? [J]. J. Pipeline Eng., 2012, 11: 229
|
19 |
Qi G L. Research on CO2 pipeline and liquid separation project of Qilu Petrochemical to Zhenglizhuang oilfield [D]. Qingdao: China University of Petroleum (East China), 2014
|
19 |
亓冠玲. 齐鲁二化厂至正理庄油田高89地区CO2输送管道及液化分离工程方案研究 [D]. 青岛: 中国石油大学(华东), 2014
|
20 |
Xie S X, Han P H, Qian Y. A pilot test and research on oil displacement by injecting CO2 in eastern Sanan of Daqing oilfield [J]. Oil Gas Recov. Technol., 1997, 4(3): 13
|
20 |
谢尚贤, 韩培慧, 钱 昱. 大庆油田萨南东部过渡带注CO2驱油先导性矿场试验研究 [J]. 油气采收率技术, 1997, 4(3): 13
|
21 |
Division of Social Development Science and Technology, Ministry of Science and Technology Development, Department of International Cooperation, Ministry of Science and Technology, China Agenda 21 Management Center. Carbon capture, utilization and storage technology development in China [R]. Beijing, 2011
|
21 |
科学技术部社会发展科技司, 科学技术部国际合作司, 中国21世纪议程管理中心. 中国碳捕集、利用与封存(CCUS)技术进展报告 [R]. 北京, 2011
|
22 |
Johnson K, Holt H, Helle K, et al. Mapping of potential HSE issues related to large-scale capture, transport and storage of CO2 [R]. Horvik: Det Norsk Veritas, 2008
|
23 |
Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
|
24 |
Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines [J]. Int. J. Greenhouse Gas Control, 2013, 17: 534
|
25 |
Sun C, Sun J B, Wang Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 193
|
26 |
Hua Y, Barker R, Neville A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments [J]. Appl. Surf. Sci., 2015, 356: 499
|
27 |
Sun J B, Sun C, Wang Y. Effects of O2 and SO2 on water chemistry characteristics and corrosion behavior of X70 pipeline steel in supercritical CO2 transport system [J]. Ind. Eng. Chem. Res., 2018, 57: 2365
|
28 |
Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. J. Supercrit. Fluids, 2011, 58: 286
|
29 |
Hua Y, Barker R, Neville A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2 [J]. Int. J. Greenhouse Gas Control, 2015, 37: 412
|
30 |
Sun C, Sun J B, Wang Y, et al. Effect of impurity interaction on the corrosion film characteristics and corrosion morphology evolution of X65 steel in water-saturated supercritical CO2 system [J]. Int. J. Greenhouse Gas Control, 2017, 65: 117
|
31 |
Hua Y, Jonnalagadda R, Zhang L, et al. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2 [J]. Int. J. Greenhouse Gas Control, 2017, 64: 126
|
32 |
Hua Y, Neville A, Barker R. Corrosion behaviour of X65 steels in water-containing supercritical CO2 environments with NO2/O2 [A]. NACE Corrosion 2018 Conference and Expo. 2018 [C]. Phoenix: National Association of Corrosion Engineers, 2018: 11085
|
33 |
Wei L, Pang X L, Gao K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments [J]. Corros. Sci., 2016, 103: 132
|
34 |
Yu C, Wang H W, Gao X H. Corrosion behavior of carbon steel with pearlite-ferrite microstructure in water-saturated supercritical H2S/CO2 environment [J]. Int. J. Electrochem. Sci., 2018, 13: 6059
|
35 |
Zhang G A, Zeng Y, Guo X P, et al. Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment [J]. Corros. Sci., 2012, 65: 37
|
36 |
Sun C, Sun J B, Luo J L. Unlocking the impurity-induced pipeline corrosion based on phase behavior of impure CO2 streams [J]. Corros. Sci., 2020, 165: 108367
|
37 |
Choi Y S, Nešić S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 788
|
38 |
Zhang Y C, Pang X L, Qu S P, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition [J]. Corros. Sci., 2012, 59: 186
|
39 |
Almeida T D C, Bandeira M C E, Moreira R M, et al. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
|
40 |
Wei L, Pang X L, Zhou M, et al. Effect of exposure angle on the corrosion behavior of X70 steel under supercritical CO2 and gaseous CO2 environments [J]. Corros. Sci., 2017, 121: 57
|
41 |
Lin X Q, Liu W, Wu F, et al. Effect of O2 on corrosion of 3Cr steel in high temperature and high pressure CO2-O2 environment [J]. Appl. Surf. Sci., 2015, 329: 104
|
42 |
Liu Z G, Gao X H, Du L X, et al. Corrosion behavior of low-alloy steel with martensite/ferrite microstructure at vapor-saturated CO2 and CO2-saturated brine conditions [J]. Appl. Surf. Sci., 2015, 351: 610
|
43 |
Hassani S, Vu T N, Rosli N R, et al. Wellbore integrity and corrosion of low alloy and stainless steels in high pressure CO2 geologic storage environments: An experimental study [J]. Int. J. Greenhouse Gas Control, 2014, 23: 30
|
44 |
Jiang X, Qu D R, Song X L, et al. Critical water content for corrosion of X65 mild steel in gaseous, liquid and supercritical CO2 stream [J]. Int. J. Greenhouse Gas Control, 2019, 85: 11
|
45 |
Jiang X, Qu D R, Song X L, et al. Impact of water content on corrosion behavior of CO2 transportation pipeline [A]. NACE Corrosion 2015 Conference and Expo. 2015 [C]. Dallas: NACE International, 2015: 5844
|
46 |
Russick E M, Poulter G A, Adkins C L J, et al. Corrosive effects of supercritical carbon dioxide and cosolvents on metals [J]. J. Supercrit. Fluids, 1996, 9: 43
|
47 |
Zhang Y C, Gao K W, Schmitt G. Effect of water on steel corrosion under supercritical CO2 conditions [J]. Mater. Performance, 2011, 50: 62
|
48 |
DeWaard C, Milliams D E. Prediction of carbonic acid corrosion in natural gas pipelines [A]. First International Conference on the Internal and External Protection of Pipes [C]. UK: University of Durham, 1975: 28
|
49 |
Spycher K, Pruess K, Ennis-King J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 1000oC and up to 600 bar [J]. Geochim. Cosmochim. Acta, 2003, 67: 3015
|
50 |
Foltran S, Vosper M E, Suleiman N B, et al. Understanding the solubility of water in carbon capture and storage mixtures: An FTIR spectroscopic study of H2O+CO2 +N2 ternary mixtures [J]. Int. J. Greenhouse Gas Control, 2015, 35: 131
|
51 |
Gu S W, Teng L, Li Y X, et al. Propagation characteristic of decompression wave for gaseous CO2 in pipeline containing impurities [J]. Petrochem. Technol., 2018, 47: 689
|
51 |
顾帅威, 滕 霖, 李玉星等. 含杂质气态CO2管道减压波传播特性 [J]. 石油化工, 2018, 47: 689
|
52 |
Zeng Y M, Arafin M, Shi C, et al. Influence of impurity hydrogen sulfide on the corrosion performance of pipeline steels in supercritical carbon dioxide stream [A]. NACE Corrosion 2016 Conference and Expo. 2016 [C]. Vancouver: NACE International, 2016: 7223
|
53 |
Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems [J]. Corros. Sci., 2016, 111: 637
|
54 |
Farelas F, Choi Y S, Nesic S. Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid CO2 phases in the presence of H2O and SO2 [J]. Corrosion, 2013, 69: 243
|
55 |
Dugstad A, Halseid M, Morland B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines [J]. Energy Procedia, 2013, 37: 2877
|
56 |
Tang Y, Guo X P, Zhang G A. Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology [J]. Corros. Sci., 2017, 118: 118
|
57 |
Sun J B, Sun C, Zhang G A, et al. Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 31
|
58 |
Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
|
59 |
Hua Y, Barker R, Neville A. Understanding the influence of SO2 and O2 on the corrosion of carbon steel in water-saturated supercritical CO2 [J]. Corrosion, 2015, 71: 667
|
60 |
Xiang Y, Xu M H, Choi Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: Mechanisms and models [J]. Corros. Eng. Sci. Technol., 2017, 52: 485
|
61 |
Choi Y S, Nešić S. Corrosion behavior of carbon steel in supercritical CO2-water environments [A]. NACE Corrosion 2009 Conference and Expo. 2009 [C]. Atlanta: NACE International, 2009: 09256
|
62 |
Seiersten M. Materials selection for separation, transportation and disposal of CO2 [A]. NACE Corrosion 2001 Conference and Expo. 2001 [C]. Houston: NACE International, 2001: 01042
|
63 |
Tan J, Chan K S. Understanding Advanced Physical Inorganic Chemistry: The Learner's Approach [M]. Singapore: World Scientific Publishing Company, 2010: 1
|
64 |
Dugstad A. Fundamental aspects of CO2 metal loss corrosion, part I: mechanism [A]. NACE Corrosion 2006 Conference and Expo. 2006 [C]. San Diego: NACE International, 2006: 6111
|
65 |
Zhang Z, Hinkson D, Singer M, et al. A mechanistic model of top-of-the-line corrosion [J]. Corrosion, 2007, 63: 1051
|
66 |
Qu S P, Li X, Gao K W, et al. The effect of exposure angle on the corrosion behavior of low-carbon microalloyed steel under CO2 conditions [J]. Corrosion, 2015, 71: 343
|
67 |
Zhang J, Wang Z L, Wang Z M, et al. Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2-enhanced oil recovery brines [J]. Corros. Sci., 2012, 65: 397
|
68 |
Tran T, Brown B, Nesic S. Corrosion of mild steel in an aqueous CO2 environment—Basic electrochemical mechanisms revisited [A]. NACE Corrosion 2015 Conference and Expo. 2015 [C]. Dallas: NACE International, 2015: 5671
|
69 |
Ma H Y, Yang C, Li G Y, et al. Influence of nitrate and chloride ions on the corrosion of iron [J]. Corrosion., 2003, 59: 1112
|
70 |
Liu Q Y, Mao L J, Zhou S W. Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments [J]. Corros. Sci., 2014, 84: 165
|
71 |
Gao K W, Yu F, Pang X L, et al. Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates [J]. Corros. Sci., 2008, 50: 2796
|
72 |
Liu D. Corrosion behavior of carbon steel under dynamic supercritical CO2 environment [D]. Wuhan: Huazhong University of Science and Technology, 2015
|
72 |
刘 丹. 动态条件下碳钢在超临界CO2环境中腐蚀机理研究 [D]. 武汉: 华中科技大学, 2015
|
73 |
Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model [A]. SPE International Symposium on Oilfield Corrosion [C]. Aberdeen: Society of Petroleum Engineers, 2004: 87555
|
74 |
Schmitt G A, Mueller M. Critical wall shear stresses in CO2 corrosion of carbon steel [A]. NACE Corrosion 1999 Conference [C]. San Antonio: NACE International, 1999: 44
|
75 |
Wei L. Study of corrosion mechanism of steels in supercritical CO2 environments [D]. Beijing: University of Science and Technology Beijing, 2016
|
75 |
魏 亮. 钢在超临界CO2环境中腐蚀机制的研究 [D]. 北京: 北京科技大学, 2016
|
76 |
Pfennig A, Kranzmann A. Effect of CO2 and pressure on the stability of steels with different amounts of chromium in saline water [J]. Corros. Sci., 2012, 65: 441
|
77 |
Li Y X, Liu M S, Zhang J. Impacts of gas impurities on the security of CO2 pipelines [J]. Nat. Gas Ind., 2014, 34: 108
|
77 |
李玉星, 刘梦诗, 张 建. 气体杂质对CO2管道输送系统安全的影响 [J]. 天然气工业, 2014, 34: 108
|
78 |
De Visser E, Hendriks C, Barrio M, et al. DYNAMIS CO2 quality recommendations [J]. Int. J. Greenhouse Gas Control, 2008, 2: 478
|
79 |
McGrail B P, Schaef H T, Glezakou V A, et al. Water reactivity in the liquid and supercritical CO2 phase: Has half the story been neglected? [J]. Energy Procedia, 2009, 1: 3415
|
80 |
Mohitpour M, Golshan H, Murray A. Pipeline Design & Construction: A Practical Approach [M]. 2nd Ed., New York: American Society of Mechanical Engineers, 2003
|
81 |
Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review [J]. Corros. Sci., 2007, 49: 4308
|
82 |
Nyborg R. Overview of CO2 corrosion models for wells and pipelines [A]. NACE Corrosion 2002 Conference and Expo. 2002 [C]. Denver: NACE International, 2002: 2233
|
83 |
Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 1: Theory and verification [J]. Corrosion, 2003, 59: 443
|
84 |
Nešić S, Nordsveen M, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 2: A numerical experiment [J]. Corrosion, 2003, 59: 489
|
85 |
Nešić S, Lee K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model [J]. Corrosion, 2003, 59: 616
|
86 |
Zhang Y, Gao K, Schmitt G, et al. Modeling steel corrosion under supercritical CO2 conditions [J]. Mater. Corros., 2013, 64: 478
|
87 |
Kongshaug K O, Seiersten M. Baseline experiments for the modeling of corrosion at high CO2 pressure [A]. NACE Corrosion 2004 Conference and Expo. 2004 [C]. New Orleans: NACE International, 2004: 4630
|
88 |
Thomas D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations [M]. 2nd Ed., Amsterdam: Elsevier Science Ltd, 2005: 937
|
89 |
Xiang Y, Wang Z, Xu M H, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2-H2O environments [J]. J. Supercrit. Fluids, 2013, 82: 1
|
90 |
Gunaltun Y M. Combining research and field data for beorrosion rate prediction [A]. NACE Corrosion 1996 Conference [C]. Denver: NACE International, 1996: 96027
|
91 |
Nesic S, Nordsveen M, Nyborg R, et al. A mechanistic model for CO2 corrosion with protective iron carbonate films [A]. NACE Corrosion 2001 Conference and Expo. 2001 [C]. Houston: NACE International, 2001: 01040
|
92 |
Srinivasan S, Kane R D. Prediction of corrosivity of CO2/H2S production environments [A]. NACE Corrosion 1996 Conference [C]. Denver: NACE International, 1996: 11
|
93 |
Srinivasan S, Tebbal S. Critical factors in predicting CO2/H2S corrosion in multiphase systems [A]. NACE Corrosion 1998 Conference [C]. San Diego: NACE International, 1998: 38
|
94 |
John R C, Jordan K G, Kapusta S D, et al. SweetCor: an information system for the analysis of corrosion of steels by water and carbon dioxide [A]. NACE Corrosion 1998 Conference [C]. San Diego: NACE International, 1998: 20
|
95 |
Anderko A M, Young R D. Simulation of CO2/H2S corrosion using thermodynamic and electrochemical models [A]. NACE Corrosion 1999 Conference [C]. San Antonio: NACE International, 1999: 31
|
96 |
Anderko A M. Simulation of FeCO3/FeS scale formation using thermodynamic and electrochemical models [A]. NACE Corrosion 2002 Conference [C]. Orlando: NACE International, 2002: 102
|
97 |
Choi Y S, Hassani S, Vu T N, et al. Development of a prediction model for high pCO2 corrosion of mild steel [A]. NACE Corrosion 2019 Conference and Expo. 2019 [C]. Nashville: NACE International, 2019: 13157
|
98 |
Duan Z H, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar [J]. Chem. Geol., 2003, 193: 257
|
99 |
Duan Z H, Sun R, Zhu C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42- [J]. Mar. Chem., 2006, 98: 131
|
100 |
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc., 1918, 40: 1361
|
101 |
Carey J W, Wigand M, Chipera S J, et al. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA [J]. Int. J. Greenhouse Gas Control, 2007, 1: 75
|
102 |
Carey J W, Svec R, Grigg R, et al. Experimental investigation of wellbore integrity and CO2-brine flow along the casing-cement microannulus [J]. Int. J. Greenhouse Gas Control, 2010, 4: 272
|
103 |
Crow W, Williams D B, Carey J W, et al. Wellbore integrity analysis of a natural CO2 producer [J]. Energy Procedia, 2009, 1: 3561
|
104 |
Han J B, Carey J W, Zhang J S. A coupled electrochemical-geochemical model of corrosion for mild steel in high-pressure CO2-saline environments [J]. Int. J. Greenhouse Gas Control, 2011, 5: 777
|
105 |
Pitzer K S. Activity Coefficients in Electrolyte Solutions [M]. 2nd Ed., Boston: CRC Press, 1991: 75
|
106 |
Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52: 280
|
107 |
Li Q, Cheng Y F. Modeling of corrosion of steel tubing in CO2 storage [J]. Greenhouse Gas.: Sci. Technol., 2016, 6: 797
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|