|
|
高端冷轧箔带形状/性能协同测控现状及趋势预测 |
杨利坡1,2( ), 张海龙1, 张永顺1 |
1.燕山大学 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004 2.燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004 |
|
Present Analysis and Trend Prediction of Shape/ Performance Collaborative Control for High-End Cold Rolling Foils |
YANG Lipo1,2( ), ZHANG Hailong1, ZHANG Yongshun1 |
1.National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China 2.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China |
引用本文:
杨利坡, 张海龙, 张永顺. 高端冷轧箔带形状/性能协同测控现状及趋势预测[J]. 金属学报, 2021, 57(3): 295-308.
Lipo YANG,
Hailong ZHANG,
Yongshun ZHANG.
Present Analysis and Trend Prediction of Shape/ Performance Collaborative Control for High-End Cold Rolling Foils[J]. Acta Metall Sin, 2021, 57(3): 295-308.
1 |
Jiang Z Y, Wei D, Tieu A K. Analysis of cold rolling of ultra thin strip [J]. J. Mater. Process. Technol., 2009, 209: 4584
|
2 |
Xie H B, Manabe K I, Furushima T, et al. Lubrication characterisation analysis of stainless steel foil during micro rolling [J]. Int. J.Adv. Manuf. Technol., 2016, 82: 65
|
3 |
Liu X H, Song M, Sun X K, et al. Advances in research and application of foil rolling [J]. J. Mech. Eng., 2017, 53(10): 1
|
3 |
刘相华, 宋 孟, 孙祥坤等. 极薄带轧制研究与应用进展 [J]. 机械工程学报, 2017, 53(10): 1
|
4 |
Antonova O V, Volkov A Y, Kamenetskii B I, et al. Microstructure and mechanical properties of thin magnesium plates and foils obtained by lateral extrusion and rolling at room temperature [J]. Mater. Sci. Eng., 2016, A651: 8
|
5 |
Jin S, Huang M, Kwon Y, et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing [J]. Science, 2018, 362: 1021
|
6 |
Lu Y, Shu X Y, Liao X Z. Size effect for achieving high mechanical performance body-centered cubic metals and alloys [J]. Sci. China Mater., 2018, 61: 1495
|
7 |
Shimizu T, Manabe K, Yang M. Deformation behavior of ultra-thin metal foils in strip drawing friction test [J]. Key Eng. Mater., 2010, 443: 110
|
8 |
van Putten K, Kopp R, Hirt G. Influences of size effects on the rolling of micro strip [A]. AIP Conference Proceedings [C], 2007, 907: 629
|
9 |
Bui Q T, Ro S K, Park J K. A static model for micro-pattern forming prediction in rolling-based surface texturing [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 2819
|
10 |
Dong X H, Wang Q, Zhang H M, et al. Research progress of micro-scale mesoscale effect [J]. Sci. China (Technol.), 2013, 43: 115
|
10 |
董湘怀, 王 倩, 章海明等. 微成形中尺寸效应研究的进展 [J]. 中国科学: 技术科学, 2013, 43: 115
|
11 |
Shan D B, Xu J, Wang C J, et al. The state of the art in plastic micro-forming [J]. Mater. China, 2016, 35: 251
|
11 |
单德彬, 徐 杰, 王春举等. 塑性微成形技术研究进展 [J]. 中国材料进展, 2016, 35: 251
|
12 |
Yu Q B, Liu X H, Tang D L. Extreme extensibility of copper foil under compound forming conditions [J]. Sci. Rep., 2013, 3: 3556
|
13 |
Song M, Liu X H, Liu L Z. Size effect on mechanical properties and texture of pure copper foil by cold rolling [J]. Materials, 2017, 10: 1
|
14 |
Tang D L, Liu X H, Song M. Size effect in copper foil after rolling [J]. J. Northeast. Univ. (Nat. Sci.), 2017, 39: 1239
|
14 |
汤德林, 刘相华, 宋 孟. 铜极薄带轧制过程中尺寸效应的研究 [J]. 东北大学学报(自然科学版), 2017, 39: 1239
|
15 |
Li L J, Zhang H M, Jiang Z Y, et al. Effects of grain size on deformation behaviour of rolling at micro scale [J]. Ordnance Mater. Sci. Eng., 2016, 39(6): 43
|
15 |
李连杰, 张红梅, 姜正义等. 微尺度下晶粒尺寸效应对轧制变形行为的影响 [J]. 兵器材料科学与工程, 2016, 39(6): 43
|
16 |
Jing Y, Zhang H M, Wu H, et al. Effects of microrolling parameters on the microstructure and deformation behavior of pure copper [J]. Int. J. Miner. Metall. Mater., 2018, 25: 45
|
17 |
Zhan M, Li H W, Sun X X, et al. Research progress of the multi-scale modeling of heterogeneous deformation for hard-to-deform material based on crystal plasticity [J]. J. Plast. Eng., 2018, 25(1): 1
|
17 |
詹 梅, 李红伟, 孙新新等. 基于晶体塑性的难变形材料不均匀变形多尺度建模研究进展 [J]. 塑性工程学报, 2018, 25(1): 1
|
18 |
Xiao H, Ren Z K, Liu X, et al. Experiment and finite element simulation of roll flattening in deformation zone for ultra-thin strip rolling [J]. Steel, 2017, 52(1): 38
|
18 |
肖 宏, 任忠凯, 刘 晓等. 极薄带轧制变形区轧辊压扁试验与有限元模拟 [J]. 钢铁, 2017, 52(1): 38
|
19 |
Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
|
20 |
Tibar H, Jiang Z Y. Improving thin strip profile using work roll cross and work roll shifting methods in cold strip rolling [J]. Int. J. Met., 2017, 2017: 6489769
|
21 |
Wang W K, Miao Q, Chen X M, et al. Critical rolling process parameters for dynamic recrystallization behavior of AZ31 magnesium alloy sheets [J]. Materials (Basel), 2018, 11: 2019
|
22 |
Zhang G H, Ma L F, Lu H P. Change of temperature field for roll of warm-rolled magnesium alloy sheet [J]. J. Taiyuan Univ. Sci. Technol., 2018, 39: 359
|
22 |
张国花, 马立峰, 卢海平. 温轧镁合金板材轧辊温度场研究 [J]. 太原科技大学学报, 2018, 39: 359
|
23 |
Yu H L, Yan M, Li J T, et al. Mechanical properties and microstructure of a Ti-6Al-4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cryorolling [J]. Mater. Sci. Eng., 2018, A710: 10
|
24 |
Dumitru F D, Higuera-Cobos O F, Cabrera J M. ZK60 alloy processed by ECAP: Microstructural, physical and mechanical characterization [J]. Mater. Sci. Eng., 2014, A594: 32
|
25 |
Kuang J, En Low T S, Niezgoda S R, et al. Abnormal texture development in magnesium alloy Mg-3Al-1Zn during large strain electroplastic rolling: Effect of pulsed electric current [J]. Int. J. Plast., 2016, 87: 86
|
26 |
Nguyen-Tran H D, Oh H S, Hong S T, et al. A review of electrically-assisted manufacturing [J]. Int. J. Precis. Eng. Manuf. Green Technol., 2015, 2: 365
|
27 |
Kim M J, Jeong H J, Park J W, et al. Modified Johnson-Cook model incorporated with eletroplasticity for uniaxial tension under a pulsed electric current [J]. Met. Mater. Int., 2018, 24: 42
|
28 |
Li M, Guo D F, Li J T, et al. Achieving heterogeneous structure in HCP Zr via electroplastic rolling [J]. Mater. Sci. Eng., 2018, A722: 93
|
29 |
Engel U. Tribology in microforming [J]. Wear, 2006, 260: 265
|
30 |
Jeon J, Bramley A N. A friction model for microforming [J]. Int. J. Adv. Manuf. Technol., 2007, 33: 125
|
31 |
Shigaki Y, Nakhoul R, Montmitonnet P. Numerical treatments of slipping/no-slip zones in cold rolling of thin sheets with heavy roll deformation [J]. Lubricants, 2015, 3: 113
|
32 |
Shatalov R, Maksimov E, Koinov T, et al. Research of flatness defects forming at 20-hi steel strips rolling mill [J]. J. Chem. Technol. Metall., 2017, 52: 199
|
33 |
Prinz K, Steinboeck A, Müller M, et al. Automatic gauge control under laterally asymmetric rolling conditions combined with feedforward [J]. IEEE Trans. Ind. Appl., 2017, 53: 2560
|
34 |
Zhang Q D, Zhang B Y, Li R, et al. Advances in theory and technology for microscopic surface quality control of steel strip [J]. Chin. J. Mech. Eng., 2016, 52(10): 32
|
34 |
张清东, 张勃洋, 李 瑞等. 钢板微观表面质量控制理论与技术研究进展 [J]. 机械工程学报, 2016, 52(10): 32
|
35 |
Liu Y J, Tieu A K. A thermal mixed film lubrication model in cold rolling [J]. J. Mater. Process. Technol., 2002, 130-131: 202
|
36 |
Hamraoui M. Thermal behaviour of rollers during the rolling process [J]. Appl. Therm. Eng., 2009, 29: 2386
|
37 |
Tran D C, Tardif N, Limam A. Experimental and numerical modeling of flatness defects in strip cold rolling [J]. Int. J. Solids Struct., 2015, 69-70: 343
|
38 |
Plicht G, Schillak H, Hoflnghoff H, et al. Cold rolling of metal strip using technical gases [J]. Air Prod. Chem., Inc., 2006, 68: 1
|
39 |
Yang L P, Yu H X, Zhang Y S, et al. Shape detection and control system of cold rolling strip based on the virtual instrument and its industrial application [J]. Chin. J. Mech. Eng., 2018, 54(14): 1
|
39 |
杨利坡, 于华鑫, 张永顺等. 冷轧带钢虚拟仪器板形测控系统及其应用 [J]. 机械工程学报, 2018, 54(14): 1
|
40 |
Yang L P, Jian Z Y, Zhang Y S, et al. High precision recognition and adjustment of complicated shape details in fine cold rolling process of ultra-thin wide strip [J]. J. Manuf. Process., 2018, 35: 508
|
41 |
Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
|
42 |
Minton J J, Cawthorn C J, Brambley E J. Asymptotic analysis of asymmetric thin sheet rolling [J]. Int. J. Mech. Sci., 2016, 113: 36
|
43 |
Fu M W, Wang J L, Korsunsky A M. A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components [J]. Int. J. Mach. Tools Manuf., 2016, 109: 94
|
44 |
Li X P, Wang F, Li X H, et al. Improvement of formability of Mg-3Al-1Zn alloy strip by electroplastic-differential speed rolling [J]. Mater. Sci. Eng., 2014, A618: 500
|
45 |
Xu Z H, Tang G Y, Tian S Q, et al. Research of electroplastic rolling of AZ31 Mg alloy strip [J]. J. Mater. Process. Technol., 2007, 182: 128
|
46 |
Zhu R F, Tang G Y, Shi S Q, et al. Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy [J]. Mater. Des., 2013, 44: 606
|
47 |
Potapova A A, Stolyarov V V. Deformability and structural features of shape memory TiNi alloys processed by rolling with current [J]. Mater. Sci. Eng., 2013, A579: 114
|
48 |
Liu P, Hsueh C H, Shek C H. Electroplastic forming in a Fe-based metallic glass ribbon [J]. J. Alloys Compd., 2016, 658: 795
|
49 |
Zhu R, Tang G. The improved plasticity of NiTi alloy via electropulsing in rolling [J]. Mater. Sci. Technol., 2017, 33: 546
|
50 |
Thien N T, Jeong Y H, Hong S T, et al. Electrically assisted tensile behavior of complex phase ultra-high strength steel [J]. Int. J. Precis. Eng. Manuf. Green Technol., 2016, 3: 325
|
51 |
Tskhondiya G A, Beklemishev N N. Simulating the effect of a high density electric current pulse on the stress field during plastic deformation [J]. Int. J. Mater. Form., 2012, 5: 157
|
52 |
Scudino S. Mechanism of shear banding during cold rolling of a bulk metallic glass [J]. J. Alloys Compd., 2019, 773: 883
|
53 |
Su J, Sanjari M, Kabir A S H, et al. Static recrystallization behavior of magnesium AZ31 alloy subjected to high speed rolling [J]. Mater. Sci. Eng., 2016, A662: 412
|
54 |
Dong Y, Liu J Z. Effects of initial orientation on microstructure and mechanical properties of AZ31 magnesium alloy sheets fabricated by large strain rolling [J]. Chin. J. Nonferrous. Met., 2014, 24: 1700
|
54 |
董 勇, 刘吉兆. 初始取向对大应变轧制AZ31镁合金板材显微组织和力学性能的影响 [J]. 中国有色金属学报, 2014, 24: 1700
|
55 |
Song G S, Jiang J Q, Chen S F, et al. Microstructure and mechanical properties of AZ31 magnesium alloy sheet processed by asymmetry rolling [J]. Rare Met. Mater. Eng., 2017, 46: 3512
|
55 |
宋广胜, 姜敬前, 陈帅峰等. 非对称轧制AZ31镁合金板材组织与性能 [J]. 稀有金属材料与工程, 2017, 46: 3512
|
56 |
Liao H M, Tang G Y, Jiang Y B, et al. Effect of thermo-electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2011, A529: 138
|
57 |
Křupka I, Hartl M, Liška M. Thin lubricating films behaviour at very high contact pressure [J]. Tribol. Int., 2006, 39: 1726
|
58 |
Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567
|
59 |
Chan W L, Fu M W, Yang B. Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process [J]. Mater. Sci. Eng., 2012, A534: 374
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|