Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1463-1473    DOI: 10.11900/0412.1961.2020.00140
  本期目录 | 过刊浏览 |
异种金属焊接接头在热-力耦合作用下的断裂位置转移机理
李克俭1,2, 张宇1,2, 蔡志鹏1,2,3,4()
1 清华大学机械工程系 北京 100084
2 清华大学先进成形制造教育部重点实验室 北京 100084
3 清华大学摩擦学国家重点实验室 北京 100084
4 清华大学先进核能协同创新中心 北京 100084
Fracture Location Shift of Dissimilar Metal Welds Under Coupled Thermal-Stress Effect
LI Kejian1,2, ZHANG Yu1,2, CAI Zhipeng1,2,3,4()
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
3 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
4 Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
引用本文:

李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
Kejian LI, Yu ZHANG, Zhipeng CAI. Fracture Location Shift of Dissimilar Metal Welds Under Coupled Thermal-Stress Effect[J]. Acta Metall Sin, 2020, 56(11): 1463-1473.

全文: PDF(3413 KB)   HTML
摘要: 

使用镍基焊缝金属连接新型高Cr马氏体耐热钢和镍基合金制造了异种金属焊接接头(DMWs),对该类DMWs进行了高温持久实验以分析其失效机理,其中,应力水平在140~260 MPa,温度为600和620 ℃。结果表明,DMW的断裂位置随应力水平的改变发生转移。高应力水平(≥240 MPa)下,断裂主要发生在马氏体耐热钢母材中,断裂模式以塑性变形为主。中等应力水平(200~240 MPa)下,断裂位置转移至马氏体耐热钢热影响区(HAZ)中的细晶区(FGHAZ)或两相区(ICHAZ)中,该区域的硬度最低且碳化物粗化显著,在粗化的碳化物周围产生了大量的蠕变空洞,此种断裂模式为典型的Ⅳ型断裂。在低应力水平(≤200 MPa)下,DMW的断裂模式为三阶段混合形式:初始阶段,因在焊缝与马氏体耐热钢界面处产生氧化尖缺口沿界面断裂,氧化尖缺口的形成是氧化与应力交互作用的结果;裂纹随后转移至马氏体耐热钢的FGHAZ或ICHAZ中扩展;前2个阶段未发生明显的塑性变形,最后裂纹转移至马氏体耐热钢母材中沿切应力最大的方向扩展直至完全断裂,该阶段发生了明显的塑性变形。此外,研究还发现随应力水平降低,DMW呈现出早期失效的倾向,即低应力水平下的高温持久强度低于由高应力水平数据线性外延得到的数值,早期失效的产生与马氏体耐热钢焊接HAZ微观组织退化和界面氧化有关。

关键词 异种金属焊接接头马氏体耐热钢镍基合金Ⅳ型裂纹氧化    
Abstract

Dissimilar metal welds (DMWs) between high-Cr martensitic heat-resistant steels and nickel-based alloys with nickel-based filler metals are widely used in fossil-fired power plants. Reports of premature failures of DMW joints have attracted considerable attention as such occurrences in the field can lead to significant economic loss and safety issues. Moreover, a comprehensive understanding of the high-temperature performance of new types of DMWs is lacking. In this work, creep tests were conducted over a stress range of 140~260 MPa at of 600 and 620 ℃. A shift in the fracture location with variations in stress was observed, with three typical failure modes. At high stress levels (240~260 MPa), the DMW fractured in the base metal (BM) of martensitic steel, accompanied by a large degree of plastic deformation. At intermediate stress levels (200~240 MPa), the DMW fractured in the fine-grained heat-affected zone (FGHAZ) and the inter-critical heat-affected zone (ICHAZ), with creep cavities around coarsened carbides, indicating a typical type IV crack. At low stress levels (140~200 MPa), the DMW fractured in a mixed mode involving three stages. First, a crack initiated at the interface between the nickel-based weld metal and the martensitic steel, which was attributed to the interaction between the oxidation behavior of the martensitic steels and the thermal stress arising from the mismatch in the coefficients of thermal expansion. Second, the crack deflected into the FGHAZ/ICHAZ and developed into a type IV crack mode. Finally, the crack propagated into the adjacent BM, featuring significant plastic deformation. In addition, in the stress-LMP (Larson-Miller parameter) plot, the creep life at a relatively low stress level was shorter than that predicted by linear extrapolation of the data obtained at a high stress level, indicating a premature failure tendency at low stress. This premature failure tendency can be attributed to microstructure degradation in HAZs and preferential oxidation at the interface at low stress levels.

Key wordsdissimilar metal weld    martensitic heat resistant steel    nickel-based alloy    type IV crack    oxidation
收稿日期: 2020-05-06     
ZTFLH:  TG407  
基金资助:国家自然科学基金项目(51775300);国家自然科学基金项目(51901113)
作者简介: 李克俭,男,1989年生,博士
图1  异种金属焊接接头(DMW)示意图及高温持久试样取样方法
MaterialNiCrFeMoCoAlTiBC
Nickel based BMBal.22.180.339.0311.9710.440.00450.057
High Cr steel BM0.7510.41Bal.1.08-0.007--0.12
ERNiCrCoMo-15522.50-8.911.21.270.39-0.07
MaterialNbSiMnSPCuWNV
Nickel based BM0.03<0.10.010.00120.0120.005---
High Cr steel BM0.050.00010.450.070.0070.011.010.050.2
ERNiCrCoMo-1-0.30.40.0020.0030.1---
表1  DMW两侧母材(BM)和焊材(WM)的化学成分 (mass fraction / %)
图2  DMW中马氏体耐热钢侧BM,界面两侧区域,距离界面约1.5 mm处的细晶热影响区或两相区(FGHAZ/ICHAZ),及镍基焊缝金属的显微组织的OM像
图3  使用分段线性拟合方式得到的应力-LMP关系
图4  高温持久断裂试样断裂在高Cr马氏体耐热钢BM、HAZ,及断裂起始于焊缝与耐热钢界面,后转移至HAZ和BM中
图5  应力为200 MPa时高温持久断裂时间(tf)与温度(T)的关系
图6  600和620 ℃时高温持久断裂时间与应力的关系
图7  高温持久试样横剖面组织形貌
图8  高温持久试样断口形貌
图9  DMW在高温持久前后的硬度分布
图10  HAZ断裂模式的试样在断口边缘附近的SEM像
图11  马氏体耐热钢侧界面两侧的成分分布
图12  低应力水平下DMW界面断裂的形成过程
图13  IF断裂模式的DMW三阶段混合断裂过程
[1] Bhaduri A K, Venkadesan S, Rodriguez P, et al. Transition metal joints for steam generators—An overview [J]. Int . J. Press. Vessels Pip., 1994, 58: 251
[2] DuPont J N. Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds [J]. Int. Mater. Rev., 2012, 57: 208
[3] Parker J D, Stratford G C. Review of factors affecting condition assessment of nickel based transition joints [J]. Sci. Technol. Weld. Joining, 1999, 4: 29
[4] Dooley R B, Stephenson G G, Tinkler M J, et al. Ontario Hydro experience with dissimilar metal welds in boiler tubing [J]. Weld. J., 1982, 61(suppl.): 45S
[5] Parameswaran P, Laha K. Role of microstructure on creep rupture behaviour of similar and dissimilar joints of modified 9Cr-1Mo steel [J]. Procedia Eng., 2013, 55: 438
[6] Shin K Y, Lee J W, Han J M, et al. Transition of creep damage region in dissimilar welds between Inconel 740H Ni-based superalloy and P92 ferritic/martensitic steel [J]. Mater. Charact., 2018, 139: 144
[7] Xu L Y, Wang Y F, Jing H Y, et al. Deformation mechanism and microstructure evolution of T92/S30432 dissimilar welded joint during creep [J]. J. Mater. Eng. Perform., 2016, 25: 3960
[8] Parker J D, Stratford G C. Characterisation of microstructures in nickel based transition joints [J]. J. Mater. Sci., 2000, 35: 4099
[9] Nicholson R D. Effect of aging on interfacial structures of nickel-based transition joints [J]. Met. Technol., 1984, 11: 115
[10] Laha K, Chandravathi K S, Parameswaran P, et al. A comparison of creep rupture strength of ferritic/austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels [J]. Metall. Mater. Trans., 2012, 43A: 1174
[11] Parker J D, Stratford G C. The high-temperature performance of nickel-based transition joints-Ⅱ. Fracture behaviour [J]. Mater. Sci. Eng., 2001, A299: 174
[12] Nicholson R D. Creep rupture properties of nickel-base transition joints after long-term service [J]. Mater. Sci. Technol., 1986, 2: 686
[13] Klueh R L, King J F. Austenitic stainless steel-ferritic steel weld joint failures [J]. Weld. J., 1982, 61(suppl.): 302S
[14] Matsunaga T, Hongo H, Tabuchi M. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition [J]. Mater. Sci. Eng., 2017, A695: 302
[15] Gittos M F, Gooch T G. The interface below stainless steel and nickel-alloy claddings [J]. Weld. J., 1992, 71(suppl.): 461S
[16] Sireesha M, Albert S K, Sundaresan S. Thermal cycling of transition joints between modified 9Cr-1Mo steel and alloy 800 for steam generator application [J]. Int . J. Press. Vessels Pip., 2002, 79: 819
[17] Williams J A, Parker J D. Effect of thermal cycling on creep behaviour of 2.25Cr-1Mo/type 316 steel dissimilar metal welds [J]. Mater. Sci. Technol., 1994, 10: 915
doi: 10.1179/mst.1994.10.10.915
[18] Friedmann V, Siegele D. Damage behaviour of nickel-based transition welds under cyclic thermomechanical loading [J]. Mater. High Temp., 2010, 27: 35
[19] Mayr P, Schlacher C, Siefert J A, et al. Microstructural features, mechanical properties and high temperature failures of ferritic to ferritic dissimilar welds [J]. Int. Mater. Rev., 2019, 64: 1
[20] Laha K, Chandravathi K S, Parameswaran P, et al. Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type Ⅳ cracking [J]. Metall. Mater. Trans., 2007, 38A: 58
[21] Wang X, Pan Q G, Tao Y S, et al. Type Ⅳ creep rupture characteristics of P92 steel weldment [J]. Acta Metall. Sin., 2012, 48: 427
[21] (王 学, 潘乾刚, 陶永顺等. P92钢焊接接头Ⅳ型蠕变断裂特性 [J]. 金属学报, 2012, 48: 427)
[22] Abson D J, Rothwell J S. Review of type Ⅳ cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels [J]. Int. Mater. Rev., 2013, 58: 437
[23] Liu Y, Tsukamoto S, Shirane T, et al. Formation mechanism of type IV failure in high Cr ferritic heat-resistant steel-welded joint [J]. Metall. Mater. Trans., 2013, 44A: 4626
[24] Tabuchi M, Hongo H, Abe F. Creep strength of dissimilar welded joints using high B-9Cr steel for advanced USC boiler [J]. Metall. Mater. Trans., 2014, 45A: 5068
[25] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[4] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[5] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[6] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[9] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[10] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[11] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[12] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[13] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[14] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.