Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1441-1451    DOI: 10.11900/0412.1961.2020.00139
  本期目录 | 过刊浏览 |
回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响
王占花, 惠卫军(), 谢志奇, 张永健, 赵晓丽
北京交通大学机械与电子控制工程学院 北京 100044
Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel
WANG Zhanhua, HUI Weijun(), XIE Zhiqi, ZHANG Yongjian, ZHAO Xiaoli
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
引用本文:

王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
Zhanhua WANG, Weijun HUI, Zhiqi XIE, Yongjian ZHANG, Xiaoli ZHAO. Effects of Tempering Temperature on Microstructure and Mechanical Properties of a Mn-Cr Type Bainitic Forging Steel[J]. Acta Metall Sin, 2020, 56(11): 1441-1451.

全文: PDF(5869 KB)   HTML
摘要: 

为了进一步优化贝氏体非调质钢锻件的组织和性能,采用组织观察、力学性能测试等方法研究了回火温度(200~500 ℃)对一种钒钛微合金化Mn-Cr系贝氏体型非调质钢锻后微观组织及力学性能的影响。结果表明,实验用钢锻态时的组织为板条状下贝氏体+粒状贝氏体的混合组织。随着回火温度升高,组织逐渐发生回复,马氏体/奥氏体(M/A)组元逐渐分解,并析出细小的渗碳体;回火温度提高到500 ℃时,M/A组元完全分解,渗碳体球化。随着回火温度升高,实验用钢的抗拉强度逐渐降低,从锻态的1418 MPa逐渐降低到500 ℃回火时的1094 MPa;而屈服强度则呈现先缓慢增加后降低的变化趋势,在400 ℃回火时达到峰值;屈强比由锻态时的0.73逐渐升高至500 ℃回火时的0.93。与强度变化趋势不同,实验用钢的冲击功随回火温度呈现先增加后降低,最后再增加的变化特征,在400 ℃回火时冲击吸收功最小,呈现出一定的回火脆性;而500 ℃回火后冲击功最大,较锻态样品提高约27%。因此,对实验用钢锻后进行适当的回火处理,有利于获得与调质合金钢相当的良好综合力学性能,从而有助于扩大其应用范围。

关键词 贝氏体型非调质钢回火温度力学性能微观组织    
Abstract

With continuous demands for cost reduction and environmental protection, bainitic forging steels, which have notably higher strength and toughness combination than ferritic-pearlitic forging steels, have been developed and gained an increasingly applications in a variety of critical automotive parts. In order to optimize the microstructure and properties of bainitic forging steel, the influences of tempering temperature ranging from 200 ℃ to 500 ℃ on the microstructure and mechanical properties of a Mn-Cr type bainitic forging steel were investigated based on microstructural observations and mechanical property tests. The results show that the microstructure in the as-forged condition of the tested steel is a mixture of lower lath-bainite and granular bainite. With the increase of tempering temperature (Ttemp), the microstructure began to recover and the large blocky martensite/austenite (M/A) constituents decomposed granularly with the precipitation of fine cementites. Further increasing Ttemp to 500 ℃, the blocky M/A constituents decomposed completely and the cementites were spheroidized. Consequently, the ultimate tensile strength (UTS) decreases gradually from 1418 MPa of the as-forged specimen to 1094 MPa of the specimen tempered at 500 ℃ with increasing Ttemp, while the yield strength (YS) increases gradually with increasing Ttemp at first, reaching a peak at 400 ℃, and then decreases with further increasing Ttemp. As a result, the yield strength ratio (YS/UTS) increases continuously from 0.73 in the as-forged state to 0.93 of the specimen tempered at 500 ℃. Unlike those of the strengths, the impact energy increases at Ttemp of 200 ℃ at first, then it decreases and reaches a valley at 400 ℃, and finally it increases notably again at Ttemp of 500 ℃, an increase of about 27% than that of the as-forged one. It is concluded that suitable tempering treatment after forging can obtain better strength and toughness balance of the tested bainitic forging steel, and thus help to expand its application range.

Key wordsbainitic forging steel    tempering temperature    mechanical property    microstructure
收稿日期: 2020-04-30     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目(2016YFB0300100)
作者简介: 王占花,女,1989年生,博士生
图1  锻态实验用钢显微组织的OM和SEM像
图2  实验用钢在不同温度回火后显微组织的SEM像
图3  实验用钢在不同状态下微观组织的TEM像
图4  实验用钢在不同状态下的EBSD图像质量图、相图及晶界取向差分布
图5  实验用钢的拉伸性能随回火温度的变化
图6  实验用钢在锻态及不同回火温度下的示波冲击载荷(能量)-位移曲线
图7  实验用钢在不同状态下的冲击功
图8  实验用钢在不同状态下的冲击断口形貌
图9  实验用钢不同组织的纳米压痕硬度随回火温度的变化
图10  实验用钢的冲击断口剖面形貌
[1] Chen S L, Hui W J, Wang L H, et al. Research and development of energy-saving high performance microalloyed forging steels [J]. Iron Steel, 2014, 49(6): 1
[1] (陈思联, 惠卫军, 王连海等. 节能低成本高品质非调质钢的研发 [J]. 钢铁, 2014, 49(6): 1)
[2] Buchmayr B. Critical assessment 22: Bainitic forging steels [J]. Mater. Sci. Technol., 2016, 32: 517
doi: 10.1080/02670836.2015.1114272
[3] Sourmail T, Smanio V. Optimisation of the mechanical properties of air cooled bainitic steel components through tailoring of the transformation kinetics [J]. Mater. Sci. Eng., 2013, A582: 257
[4] Keul C, Wirths V, Bleck W. New bainitic steels for forgings [J]. Arch. Civ. Mech. Eng., 2012, 12: 119
doi: 10.1016/j.acme.2012.04.012
[5] Wu H, Liu C, Zhao Z B, et al. Design of air-cooled bainitic microalloyed steel for a heavy truck front axle beam [J]. Mater. Des., 2006, 27: 651
[6] Wang X Y. Development of new type non-quenched-tempered steels [J]. Spec. Steel, 2001, 22(2): 1
[6] (汪学瑶. 新型非调质钢的发展 [J]. 特殊钢, 2001, 22(2): 1)
[7] An Z G, Huang Y X, Hou H Y, et al. Continuous cooling transformation of bainite non-quenched and tempered steel for automobile front axle [J]. Iron Steel, 2016, 51(12): 70
[7] (安治国, 黄艳新, 侯环宇等. 汽车前轴用贝氏体型非调质钢连续冷却转变 [J]. 钢铁, 2016, 51(12): 70)
[8] Feng J Q, Wang G L, Zou M H, et al. Research on non-quenched-tempered steel for heavy truck front axle [J]. Autom. Technol. Mater., 2014, (4): 1
[8] (冯佳奇, 王敢利, 邹敏华等. 重型汽车前轴用非调质钢的研究 [J]. 汽车工艺与材料, 2014, (4): 1)
[9] Jiang Z H, Wang P, Li D Z, et al. Effects of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel [J]. Acta Metall. Sin., 2015, 51: 925
[9] (蒋中华, 王 培, 李殿中等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响 [J]. 金属学报, 2015, 51: 925)
[10] Wang K K, Tan Z L, Gao G H, et al. Ultrahigh strength-toughness combination in bainitic rail steel: The determining role of austenite stability during tempering [J]. Mater. Sci. Eng., 2016, A662: 162
[11] Zhou Y L, Jia T, Zhang X J, et al. Investigation on tempering of granular bainite in an offshore platform steel [J]. Mater. Sci. Eng., 2015, A626: 352
[12] Peng J M, Luo Y, Wang H B, et al. Effect of tempering temperature and time on mechanical property of non-quenched and tempered bainitic steel [J]. Shanghai Met., 2009, 31(3): 16
[12] (彭金明, 罗 毅, 汪宏斌等. 回火温度和时间对贝氏体型非调质钢力学性能的影响 [J]. 上海金属, 2009, 31(3): 16)
[13] Luo Y, Peng J M, Wang H B,et al. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel [J]. Mater. Sci. Eng., 2010, A527: 3433
[14] Xu Z B, Hui W J, Wang Z H, et al. Mechanical properties of a microalloyed bainitic steel after hot forging and tempering [J]. J. Iron Steel Res. Int., 2017, 24: 1085
[15] Wang Z H, Hui W J, Chen Z, et al. Effect of vanadium on microstructure and mechanical properties of bainitic forging steel [J]. Mater. Sci. Eng., 2020, A771: 138653
[16] Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
[16] (邵成伟, 惠卫军, 张永健等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191)
[17] Gao G H, Zhang H, Bai B Z. Effect of tempering temperature on low temperature impact toughness of a low carbon Mn-series bainitic steel [J]. Acta Metall. Sin., 2011, 47: 513
[17] (高古辉, 张 寒, 白秉哲. 回火温度对Mn系低碳贝氏体钢的低温韧性的影响 [J]. 金属学报, 2011, 47: 513)
[18] Wang H C, Zhou C, Xu F,et al. Optimization experimental research on 42CrMo steel used in the fastener for rail transportation [J]. Metall. Eng., 2015, 2(4): 198
[18] (王海川, 周 超, 徐 飞等. 轨道交通紧固件用钢42CrMo的优化试验研究 [J]. 冶金工程, 2015, 2(4): 198)
[19] Li X Y. Jiuquan steel production of 40Cr steel heat treatment process test research [J]. Gansu Metall., 2015, 37(1): 64
[19] (李晓燕. 对酒钢生产的40Cr钢热处理工艺试验研究 [J]. 甘肃冶金, 2015, 37(1): 64)
[20] Wan D C, Cai Q W, Yu W, et al. Tempering microstructure and mechanical properties of an ultra high strength bainitic steel [J]. Trans. Mater. Heat Treat., 2013, 34(5): 143
[20] (万德成, 蔡庆伍, 余 伟等. 超高强贝氏体钢的回火组织与力学性能 [J]. 材料热处理学报, 2013, 34(5): 143)
[21] Srivatsa K, Srinivas P, Balachandran G, et al. Room temperature microstructure and property evaluation of a heat treated fully bainitic 20CrMoVTiB410 Steel [J]. JOM, 2016, 68: 2704
[22] Jiao D T, Cai Q W, Wu H B. Effects of cooling process after rolling on microstructure and yield ratio of high-strain pipeline steel X80 [J]. Acta Metall. Sin., 2009, 45: 1111
[22] (焦多田, 蔡庆伍, 武会宾. 轧后冷却制度对X80级抗大变形管线钢组织和屈强比的影响 [J]. 金属学报, 2009, 45: 1111)
[23] DeArdo A J. Multi-phase microstructures and their properties in high strength low carbon steels [J]. ISIJ Int., 1995, 35: 946
[24] Zhao H, Wang X M, Zhang X F, et al. Effect of tempering on microstructure and mechanical properties of low carbon bainitic steel [A]. Proceedings of the 8th (2011) China Iron and Steel Annual Conference [C]. Beijing: China Metal Society, 2011: 6
[24] (赵 慧, 王学敏, 张小帆等. 回火对低碳贝氏体钢组织与性能的影响 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 中国金属学会, 2011: 6)
[25] Li Z J, Xiao N M, Li D Z, et al. Influence of microstructure on impact toughness of G18CrMo2-6 steel during tempering [J]. Acta Metall. Sin., 2014, 50: 777
[25] (李振江, 肖纳敏, 李殿中等. G18CrMo2-6钢回火组织及冲击韧性研究 [J]. 金属学报, 2014, 50: 777)
[26] Li B Z, Li C S, Jin X, et al. Effect of M-A constituents formed in thermo-mechanical controlled process on toughness of 20CrNi2MoV steel [J]. J. Iron Steel Res. Int., 2019, 26: 1340
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.