Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 309-316    DOI: 10.11900/0412.1961.2020.00134
  研究论文 本期目录 | 过刊浏览 |
316LN不锈钢管状试样高温高压水的腐蚀疲劳行为
谭季波, 王翔, 吴欣强(), 韩恩厚
中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 辽宁省核电材料安全与评价技术重点实验室 沈阳 110016
Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water
TAN Jibo, WANG Xiang, WU Xinqiang(), HAN En-Hou
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

谭季波, 王翔, 吴欣强, 韩恩厚. 316LN不锈钢管状试样高温高压水的腐蚀疲劳行为[J]. 金属学报, 2021, 57(3): 309-316.
Jibo TAN, Xiang WANG, Xinqiang WU, En-Hou HAN. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. Acta Metall Sin, 2021, 57(3): 309-316.

全文: PDF(2748 KB)   HTML
摘要: 

设计了一种管状疲劳试样,高温高压水流经试样内部,试样外部与空气接触。利用管状试样研究了316LN不锈钢高温高压水腐蚀疲劳性能,重点关注了应变速率对其疲劳性能的影响。实验结果表明,高温高压水环境降低了316LN不锈钢的疲劳强度,且疲劳寿命随应变速率降低而降低;管状试样与标准棒状试样获得的疲劳寿命相差不大,表明利用管状试样研究核电结构材料高温高压水环境疲劳性能是合理可行的。在低应变速率条件下,疲劳裂纹源区域为典型的扇形花样,呈现准解理开裂特征。疲劳裂纹扩展区为典型的疲劳辉纹特征。疲劳裂纹萌生阶段高温高压水环境效应更加显著。同时讨论了316LN不锈钢在高温高压水环境中的疲劳损伤机理。

关键词 腐蚀疲劳高温高压水不锈钢管状试样    
Abstract

Environmentally assisted fatigue is an important factor in the design, safety review, and life management of key components used in nuclear power plants. Piping systems, valves, and small-bore pipes are sensitive to fatigue damage in nuclear power plants. In this work, a kind of hollow specimen for fatigue testing was designed. High-temperature pressurized water flows through the inside of the specimen, and the outside of the specimen is exposed to air. The corrosion fatigue behavior of 316LN stainless steel was investigated in high-temperature pressurized water using the hollow specimens. The experimental results show that the fatigue strength of 316LN stainless steel was reduced in a high-temperature pressurized water environment, and its fatigue life decreased with decreasing strain rate. The fatigue lives obtained by hollow and standard round bar specimens were comparable, which indicate that it is reasonable and feasible to use the hollow specimen to study the environmentally assisted fatigue performance of nuclear-grade structural materials in a high-temperature pressurized water environment. At low strain rate conditions, the fatigue crack initiation region is a typical fan-shaped pattern with quasi-cleavage cracking characteristics. The fatigue crack growth region is characterized by fatigue striation, and the environmental effects are highly significant in the stage of fatigue crack initiation. The fatigue damage mechanism of 316LN stainless steel in a high-temperature pressurized water environment is also discussed.

Key wordscorrosion fatigue    high-temperature pressurized water    stainless steel    hollow specimen
收稿日期: 2020-04-27     
ZTFLH:  TL341  
基金资助:国家重点研发计划项目(2017YFB0702103);国家自然科学基金项目(51671201)
作者简介: 谭季波,男,1988年生,副研究员,博士
图1  316LN不锈钢管状试样形状尺寸示意图
图2  高温高压循环水腐蚀疲劳装置示意图
图3  316LN不锈钢管状试样安装示意图
ParameterValueUnit
Strain amplitude0.4%-0.9%
Strain ratio0.2
Strain rate(0.4-0.004) × 10-2s-1
Temperature320oC
Pressure12MPa
DO<5 × 10-9 (by weight)
Li2.2 × 10-6 (by weight)
B1200 × 10-6 (by weight)
pH6.5-7.0
Flow rate10 (0.142)L·h-1 (m·s-1)
表1  腐蚀疲劳实验参数
图4  316LN不锈钢显微组织的OM像
图5  316LN不锈钢管状试样和标准棒状试样[13]高温高压水腐蚀疲劳数据
图6  应变速率对316LN不锈钢管状试样疲劳寿命的影响
图7  316LN不锈钢高温高压水腐蚀疲劳过程中峰值载荷与循环周次之间的关系
图8  不同应变速率条件下316LN不锈钢管状试样疲劳断口宏观形貌(a) 0.4 × 10-2 s-1 (b) 0.04 × 10-2 s-1 (c) 0.004 × 10-2 s-1
图9  不同应变速率条件下316LN不锈钢管状试样疲劳裂纹源形貌(a, b) 0.4 × 10-2 s-1 (c, d) 0.04 × 10-2 s-1 (e, f) 0.004 × 10-2 s-1
图10  不同应变速率条件下316LN不锈钢管状试样断口不同位置处(与裂纹源距离)的疲劳辉纹特征(a-c) 200 μm (d-f) 500 μm (g-i) 1000 μm
图11  316LN不锈钢管状试样(0.004 × 10-2 s-1)内表面二次裂纹以及氧化物
图12  316LN不锈钢在高温高压水环境中距离裂纹源不同位置处的疲劳裂纹扩展速率
1 Carey J. Materials reliability program, fatigue issues assessment (MRP-138) [R]. Electric Power Research Institute, 2005
2 Chopra O K, Shack W J. Effect of LWR coolant environments on the fatigue life of reactor materials [R]. NUREG/CR-6909, ANL-06/08, 2007
3 Chopra O K, Stevens G. Effect of LWR coolant environments on the fatigue life of reactor materials [R]. NUREG/CR-6909, 2018
4 Japan Nuclear Energy Safety Organization. Environmental fatigue evaluation method for nuclear power plants [R]. JNES-SS-1005, 2011
5 Kondo T, Nakajima H, Nagasaki R. Metallographic investigation on the cladding failure in the pressure vessel of a BWR [J]. Nucl. Eng. Des., 1971, 16: 205
6 US Nuclear Regulatory Commission (NRC). Regulatory Guide 1.207, Guidelines for evaluating fatigue analyses incorporating the life reduction of metal components due to the effects of the light-water reactor environment for new reactors [Z]. Washington DC, USA: Nuclear Regulatory Commission, 2007
7 Tan J B, Wu X Q, Han E H, et al. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water [J]. J. Nucl. Mater., 2017, 489: 33
8 Wu X Q, Xu S, Han E H, et al. Corrosion fatigue of nuclear-grade stainless steel in high temperature water and its environmental fatigue design model [J]. Acta Metall. Sin., 2011, 47: 790
8 吴欣强, 徐 松, 韩恩厚等. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型 [J]. 金属学报, 2011, 47: 790
9 American Society of Mechanical Engineers. ASME boiler and pressure vessel code section III (Z), New York, 2015
10 Faidy C. Status of French road map to improve environmental fatigue rules [A]. Proceedings of the ASME 2012 Pressure Vessels and Piping Conference [C]. Toronto, Ontario, Canada: ASME, 2012
11 American Society Mechanical Engineers. Fatigue design curves for light water reactor environments [Z]. ASME Code-Case N-761, 2010
12 American Society Mechanical Engineers. Fatigue evaluations including environmental effects [Z]. ASME Code-Case N-792, 2010
13 Tan J B, Zhang Z Y, Zheng H, et.al. Corrosion fatigue model of austenitic stainless steels used in pressurized water reactor nuclear power plants [J]. J. Nucl. Mater., 2020, 541, 152407
14 Cho H, Kim B K, Kim I S, et al. Low cycle fatigue behaviors of type 316LN austenitic stainless steel in 310℃ deaerated water-fatigue life and dislocation structure development [J]. Mater. Sci. Eng., 2008, A476: 248
15 Hong S G, Lee S B. Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel [J]. J. Nucl. Mater., 2005, 340: 307
16 Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J]. J. Nucl. Mater., 2004, 328: 232
17 Kuang W J, Wu X Q, Han E H. Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water [J]. Corros. Sci., 2012, 63: 259
18 Gavenda D J, Luebbers P R, Chopra O K. Crack initiation and crack growth behavior of carbon and low-alloy steels [R]. Orlando, FL: ASME, 1997: 243
19 Gao J, Tan J B, Wu X Q, et al. Effect of grain boundary engineering on corrosion fatigue behavior of 316LN stainless steel in borated and lithiated high-temperature water [J]. Corro. Sci., 2019, 152: 190
20 Chopra O K, Park H B. Mechanism of fatigue crack initiation in light water reactor coolant environments [R]. ANL/ET/CP-101178, 2000
21 Huin N, Tsutusmi K, Legras L, et al. Fatigue crack initiation of 304L stainless steel in simulated PWR primary environment: Relative effect of strain rate [A]. Proceedings of the ASME 2012 Pressure Vessels and Piping Conference [C]. Toronto, Ontario, Canada: ASME, 2012
22 Xu S, Wu X Q, Han E H, et al. Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water [J]. Mater. Sci. Eng., 2008, A490: 16
23 Turnbull A. Modelling of crack chemistry in sensitized stainless steel in boiling water reactor environments [J]. Corros. Sci., 1997, 39: 789
24 Turnbull A. Modeling of the chemistry and electrochemistry in cracks—A review [J]. Corrosion, 2001, 57: 175
25 Dumerval M, Perrin S, Marchetti L, et al. Hydrogen absorption associated with the corrosion mechanism of 316L stainless steels in primary medium of pressurized water reactor (PWR) [J]. Corros. Sci., 2014, 85: 251
26 Jambon F, Marchetti L, Jomard F, et al. Mechanism of hydrogen absorption during the exposure of alloy 600-like single-crystals to PWR primary simulated media [J]. J. Nucl. Mater., 2011, 414: 386
27 Laird C, Smith G C. Crack propagation in high stress fatigue [J]. Philo. Mag., 1962, 7: 847
28 Zhang Z Y, Tan J B, Wu X Q, et al. Corrosion fatigue behavior and crack-tip characteristic of 316LN stainless steel in high-temperature pressurized water [J]. J. Nucl. Mater., 2019, 518: 21
29 Kanezaki T, Narazaki C, Mine Y, et al. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels [J]. Int. J. Hydrogen Energy, 2008, 33: 2604
[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[7] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[8] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[9] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[10] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[13] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[14] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[15] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.