Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1175-1184    DOI: 10.11900/0412.1961.2019.00441
  本期目录 | 过刊浏览 |
航空发动机整体叶环中纤维断丝超声检测方法
武玉鹏1,2, 张博1(), 李经明1, 张双楠1, 吴颖1, 王玉敏1, 蔡桂喜1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring
WU Yupeng1,2, ZHANG Bo1(), LI Jingming1, ZHANG Shuangnan1, WU Ying1, WANG Yumin1, CAI Guixi1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

武玉鹏, 张博, 李经明, 张双楠, 吴颖, 王玉敏, 蔡桂喜. 航空发动机整体叶环中纤维断丝超声检测方法[J]. 金属学报, 2020, 56(8): 1175-1184.
Yupeng WU, Bo ZHANG, Jingming LI, Shuangnan ZHANG, Ying WU, Yumin WANG, Guixi CAI. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. Acta Metall Sin, 2020, 56(8): 1175-1184.

全文: PDF(2938 KB)   HTML
摘要: 

基于超声头波(head-waves)理论,当探头以一定角度激励出的折射纵波传播到界面时产生能量较高的爬波,据此建立了连续SiC纤维增强钛合金基复合材料(Ti-MMC)整体叶环中SiC纤维环断丝缺陷超声爬波检测的有限元仿真模型,分析了多层介质界面超声波传播特性及爬波遇到断丝缺陷时的衍射现象。仿真结果表明,在缺陷上方的水层中会产生明显的缺陷信号波。根据仿真结果,设计制作了超声爬波(5 MHz,20°)-水浸聚焦(5 MHz,直径6 mm)组合探头和带有纤维断丝的人工缺陷试样,采用超声C扫描设备进行了检测实验。结果表明,超声爬波法能够成功地检测纤维环试样中不同深层的3层断丝缺陷(裂纹自身高度约0.42 mm)。该方法简单、经济、快速,有望解决Ti-MMC整体叶环中深埋型纤维环断丝缺陷的无损检测难题。

关键词 整体叶环连续SiC纤维复合材料超声检测爬波    
Abstract

The fiber fracture is a very dangerous defect in the aeroengine integral bladed rings which is manufactured by continuous SiC fibers-reinforced titanium alloy matrix composite (Ti-MMC). Currently the lack of an effective method for inspecting the fiber fracture seriously influences the quality control of the aeroengine integral bladed rings, therefore solving the problem of non-destructive testing for deep buried radial micro-cracks is an insurmountable barrier for the application of Ti-MMC integral bladed rings in aviation. In this work, based on the theory of ultrasonic head-waves, the refraction longitudinal waves with the proper angle generated by the creeping wave probe are propagated on the interface, which means the creeping wave with high energy is generated. The finite element simulation model of the creeping wave is established for inspecting the defect of SiC fibers breakage in Ti-MMC aero-engine bling structure. Based on the results of the finite element simulation, significant defect signal waves are generated in the water layer above the defect. After that, not only the ultrasonic propagation characteristics at the interface of multilayer media but also the diffraction phenomenon of the creeping wave when they encounter the broken wire defect are analyzed. And the detection signal amplitude is not only affected by the incident angle of the creeping probe but also is related to the thickness of titanium alloy. In order to receive the diffracted waves with high sensitivity, the assembled probe, which is composed by a creeping wave exciter (5 MHz, 20°) and an immersion focusing sensor (5 MHz, diameter 6 mm), is specially designed and manufactured according to the results of the finite element simulation. In addition, the artificial sample with the broken fiber is prepared and then tested by the ultrasonic C-scan testing system with the assembled probe. The results show that the three-layer broken wire defects (the crack height is about 0.42 mm) with different depths in the artificial sample can be detected successfully. The C-scan results can match the defect positions of the artificial sample which means this detection method is valid. This method is simple, economical and fast, and is expected to solve the problem of nondestructive testing for broken wire in the deep embedded fiber ring in the Ti-MMC aero-engine bling structure.

Key wordsintegral bladed ring    continuous SiC fiber    composite    ultrasonic testing    creeping wave
收稿日期: 2019-12-23     
ZTFLH:  O426.9  
基金资助:国家自然科学基金项目(51605468);中国科学院仪器设备功能开发技术创新项目(Y8M1734171);辽宁省自然科学基金项目(2019-MS-334)
作者简介: 武玉鹏,男,1994年生,硕士生
图1  整体叶环制造工艺示意图
图2  SiC纤维增强钛合金基复合材料(Ti-MMC)整体叶环坯中缺陷形态示意图
图3  一种特殊纵波P1入射形成的头波系统[23]
图4  TOFD检测原理示意图
图5  整体叶环坯纤维断丝超声爬波与水浸聚焦组合检测法示意图
图6  简单结构头波系统组成仿真模型
图7  超声激励信号
图8  不同时刻(t)的声场分布
图9  整体叶环坯纤维断丝超声检测仿真模型
图10  不同时刻的声场分布
图11  缺陷衍射波进入水中时的声场
图12  有无缺陷时的信号对比
图13  探头角度对检测信号幅度的影响
图14  钛合金层厚度对检测信号幅度的影响
图15  带预制纤维断丝缺陷的Ti-MMC试样
图16  探头组件示意图
图17  人工试样C扫描检测结果
图18  人工试样中典型位置的A扫信号
[1] Yang R, Shi N L, Wang Y M, et al. Recent progress in SiC fibre reinforced titanium matrix composites [J]. Titanium Ind. Prog., 2005, 22(5): 32
[1] (杨 锐, 石南林, 王玉敏等. SiC纤维增强钛基复合材料研究进展 [J]. 钛工业进展, 2005, 22(5): 32)
[2] Wang Y M, Zhang G X, Zhang X, et al. Advances in SiC fiber reinforced titanium matrix composites [J]. Acta Metall. Sin., 2016, 52: 1153
doi: 10.11900/0412.1961.2016.00347
[2] (王玉敏, 张国兴, 张 旭等. 连续SiC纤维增强钛基复合材料研究进展 [J]. 金属学报, 2016, 52: 1153)
doi: 10.11900/0412.1961.2016.00347
[3] Wang Y M, Xiao P, Shi N L, et al. SiC fibre reinforced titanium matrix composite: Interface evolution and component manufacturing [J]. Mater. China, 2010, 29(5): 9
[3] (王玉敏, 肖 鹏, 石南林等. SiC纤维增强钛基复合材料界面研究及构件研制 [J]. 中国材料进展, 2010, 29(5): 9)
[4] Chang D J, Kao W H. SiC reinforced titanium corrugated structures for high temperature application [J]. Sampe J., 1998, 24: 13
[5] Wu H, Zhao Y Q, Ge P. The advanced design and manufacturing technology of the key component of titanium for aviation engine [J]. Mater. Rev., 2011, 25(7): 101
[5] (吴 欢, 赵永庆, 葛 鹏. 航空发动机用关键钛合金部件先进设计及制造技术 [J]. 材料导报, 2011, 25(7): 101)
[6] Zhang G Q, Zhao M, Lu S, et al. Development of research on aeroengine bling structure [J]. Aeronaut. Manuf. Technol., 2003, (9): 50
[6] (张国乾, 赵 明, 陆 山等. 航空发动机整体叶环结构的研究进展 [J]. 航空制造技术, 2003, (9): 50)
[7] Favre J P, Vassel A, Laclau C. Testing of SiC/titanium composites by fragmentation and push-out tests: Comparison and discussion of test data [J]. Composites, 1994, 25: 482
[8] Kerans R J, Parthasarathy T A. Theoretical analysis of the fiber pullout and pushout tests [J]. J. Am. Ceram. Soc., 1991, 74: 1585
doi: 10.1111/jace.1991.74.issue-7
[9] Kong X, Wang Y M, Yang Q, et al. In situ detection of damage in the SiCf/Ti6242 composite during the thermomechanical fatigue test [J]. Rare Met. Mater. Eng., 2020, 49: 933
[9] (孔 旭, 王玉敏, 杨 青等. SiCf/Ti6242复合材料热机械疲劳损伤原位研究 [J]. 稀有金属材料与工程, 2020, 49: 933)
[10] Ji X, Luo X, Yang Y Q, et al. Research progress of nondestructive testing for continuous fiber-reinforced metal-matrix composites [J]. Rare Met. Mater. Eng., 2013, 42(S2): 401
[10] (吉 幸, 罗 贤, 杨延清等. 连续纤维增强金属基复合材料无损检测研究进展 [J]. 稀有金属材料与工程, 2013, 42(增刊2): 401)
[11] Waterbury M C, Karpur P, Matikas T E, et al. In situobservation of the single-fiber fragmentation process in metal-matrix composites by ultrasonic imaging [J]. Compos. Sci. Technol., 1994, 52: 261
doi: 10.1016/0266-3538(94)90211-9
[12] Park J M, Lee S I, Kwon O Y, et al. Comparison of nondestructive microfailure evaluation of fiber-optic bragg grating and acoustic emission piezoelectric sensors using fragmentation test [J]. Composites, 2003, 34A: 203
[13] Yancey R N, Baaklini G Y. Computed tomography evaluation of metal-matrix composites for aeropropulsion engine applications [J]. J. Eng. Gas Turbines Power., 1994, 116: 635
doi: 10.1115/1.2906867
[14] Mueller B R, Lange A, Harward M, et al. Micro crack characterization of metal matrix composite by 3D refraction-computed-tomography [Z]. https://www.ndt.net/article/wcndt2004/pdf/materials_characterization/262_mueller.pdf
[15] Hirano T, Usami K, Tanaka Y, et al. In situX-ray CT under tensile loading using synchrotron radiation [J]. J. Mater. Res., 1995, 10: 381
doi: 10.1557/JMR.1995.0381
[16] Daryabor P, Safizadeh M S. Investigation of morphology techniques capability for the enhancement of ultrasonic C-scan images of composite patches [J]. Mater. Eval., 2019, 77: 203
[17] Cawley P. The rapid non-destructive inspection of large composite structures [J]. Composites, 1994, 25: 351
[18] Cai G X, Shen J Z, Sha G F, et al. The formation mechanism and characteristics of the delayed wave echoes in the slender piece by axial ultrasonic inspection [J]. Nondestruct. Test., 2018, 40(7): 1
[18] (蔡桂喜, 沈建中, 沙高峰等. 细长工件轴向超声检测中迟到波的形成机制及特性 [J]. 无损检测, 2018, 40(7): 1)
[19] Leyens C, Kocian F, Hausmann J, et al. Materials and design concepts for high performance compressor components [J]. Aerosp. Sci. Technol., 2003, 7: 201
doi: 10.1016/S1270-9638(02)00013-5
[20] Zhang X, Wang Y M, Lei J F, et al. The interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composite [J]. Acta Metall. Sin., 2012, 48: 1306
doi: 10.3724/SP.J.1037.2012.00347
[20] (张 旭, 王玉敏, 雷家峰等. SiCf/TC17复合材料界面热稳定性及元素扩散机理 [J]. 金属学报, 2012, 48: 1306)
doi: 10.3724/SP.J.1037.2012.00347
[21] Wang Y M, Fu Y C, Shi N L, et al. Effects of sputtering parameter on the microstructure of Ti-6Al-4V coating on SiC fibre [J]. Acta Metall. Sin, 2004, 40: 359
[21] (王玉敏, 符跃春, 石南林等. 溅射参量对SiC涂层Ti-6Al-4V显微组织的影响 [J]. 金属学报, 2004, 40: 359)
[22] Zhang X, Yang Q, Wang Y M, et al. Room and elevated temperature tensile properties of SiCf/TC17 composite [A]. Proceedings of the 12th World Conference on Titanium [C]. Beijing: Science Press, 2011: 1545
[23] Heelan P A. On the theory of head waves [J]. Geophysics, 1953, 18: 871
doi: 10.1190/1.1437941
[24] ISO. ISO 5577: 2017 Non-destructive testing—Ultrasonic testing—Vocabulary [S]. 2017
[25] Hojjati M H, Honarvar F. An investigation of the relationship between subsurface and head waves by finite element modeling [J]. Nondestr. Test. Eval., 2016, 31: 319
doi: 10.1080/10589759.2015.1066786
[26] Ferrand A, Darmon M, Chatillon S, et al. Modeling of ray paths of head waves on irregular interfaces in TOFD inspection for NDE [J]. Ultrasonics, 2014, 54: 1851
pmid: 24388406
[27] Merazi-Meksen T, Kemmouche A, Boudraa M, et al. Sparse representations to replace TOFD images in non-destructive testing of materials [J]. J. Nondestr. Eval., 2017, 36: 67
doi: 10.1007/s10921-017-0446-0
[1] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[5] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[6] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[7] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[8] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[9] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[10] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[11] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[12] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[13] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[14] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.
[15] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.