Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 599-609    DOI: 10.11900/0412.1961.2021.00333
  研究论文 本期目录 | 过刊浏览 |
三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为
潘成成, 张翔, 杨帆, 夏大海(), 何春年, 胡文彬()
天津大学 材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300350
Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater
PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai(), HE Chunnian, HU Wenbin()
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
引用本文:

潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
Chengcheng PAN, Xiang ZHANG, Fan YANG, Dahai XIA, Chunnian HE, Wenbin HU. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. Acta Metall Sin, 2022, 58(5): 599-609.

全文: PDF(3618 KB)   HTML
摘要: 

采用热压和热轧方法制备了三维石墨烯纳米片网络/Cu复合材料(3D-GLNN/Cu),组织表征结果表明,在块体复合材料中石墨烯网络结构保持完整,有效限制了Cu基体晶粒长大,热压态和热轧态3D-GLNN/Cu的硬度分别较纯Cu提高了8%和46%。采用电化学方法和空蚀失重分析研究了其在模拟海洋环境中的腐蚀和空蚀行为。极化曲线测试结果表明,3D-GLNN/Cu的阳极溶解电流与热压态纯Cu相比显著降低,热轧处理对复合材料的耐蚀性影响不大。腐蚀电位下的电化学阻抗谱(EIS)及电化学等效电路拟合分析结果表明,3D-GLNN/Cu的电极过程动力学较为复杂,主要受电荷转移和扩散过程共同控制。欧姆电阻校正后的Bode图结果表明,高频区的相位角大于-90°而阻抗模斜率约为-0.9,Cu及2种3D-GLNN/Cu复合材料在模拟海水中均存在常相位角元件(CPE)特征,这主要是因为电极表面材料结构和成分不均一性导致的局部界面电容和电荷转移电阻存在差异。随着浸泡时间延长(从1 h到9 d),EIS高频区容抗弧均是先增加后减小,主要是因为腐蚀生成的CuCl盐膜在表面的覆盖与局部脱落有关,EIS低频区出现扩散阻抗特征,且低频区相位角为18 °~23 °,说明电极过程不是单一反应物的Warburg扩散阻抗特征,而是受阴阳极传质过程共同控制。空蚀失重结果表明,热轧后的3D-GLNN/Cu与热压态的材料相比,耐空蚀性能显著下降,这主要是因为石墨烯与Cu基体的弹性模量的差异,在空蚀机械冲击力作用下形变不协调,易产生凹坑。

关键词 石墨烯复合材料腐蚀电化学阻抗谱    
Abstract

Herein, three-dimensional graphene-like nanosheet network (3D-GLNN)/copper (Cu) materials were synthesized using hop-pressing (HP) and hot-rolling (HR) methods and their corrosion resistance and mechanism were investigated using polarization curves, electrochemical impedance spectroscopy (EIS), and weight loss data after a cavitation corrosion test. Microstructural characterization results revealed that the 3D-GLNN structure was intact in the bulk composites, thereby restricting the effective grain growth of the Cu matrix. Compared with pure Cu, the Vickers hardness of 3D-GLNN/Cu fabricated using the HP and HR methods improved by 8% and 46%, respectively. Polarization curve results indicated that the anodic dissolution current of 3D-GLNN/Cu was considerably lower than that of pure Cu, indicating that 3D-GLNN/Cu exhibited better corrosion resistance. EIS measurements under a corrosion potential revealed that the electrode process kinetics was complex, with both charge and mass transfer controlling it. By extending the immersion time from 1 h to 9 d, the corrosion potential first became positive and then became negative. The capacitance arc at a high-frequency EIS range first increased and then decreased, attributed to the formation and detachment of a CuCl salt film. Diffusion impedance was observed in the low-frequency EIS range, with a phase angle of 18°-23°, indicating that the mass transfer process was not attributed to a single species but controlled by anodic and cathodic reactants. The constant phase angle element (CPE) behavior of the electrochemical system was further evaluated using the ohm-corrected phase angle and impedance modulus. The high-frequency phase angle was greater than -90 °, while the slope of impedance modulus was approximately -0.9; thus, the CPE was used to model the EIS data. The CPE behavior was attributed to the surface distribution of the charge transfer resistance and interface capacitance, implying a time-constant dispersion on the surface. Weight loss data after the cavitation corrosion test indicated that pure Cu showed better cavitation resistance than 3D-GLNN/Cu fabricated using the HR and HP methods. This is because of the difference in the elastic modulus between the graphene and Cu matrix that caused deformation dissonance during cavitation erosion.

Key wordsgraphene    composite    corrosion    EIS
收稿日期: 2021-08-11     
ZTFLH:  O646  
基金资助:国家自然科学基金项目(52031007);国家自然科学基金项目(52171077);天津市新材料科技重大专项项目(17ZXCLGX00060);中国博士后科学基金项目(2020M670648);中国博士后科学基金项目(2021T140505)
作者简介: 夏大海, dahaixia@tju.edu.cn,主要从事腐蚀电化学方面的研究胡文彬, wbhu@tju.edu.cn,主要从事材料表面工程技术、金属基复合材料、纳米金属材料的可控制备与应用基础的研究与开发
潘成成,男,1993年生,博士生张 翔(共同第一作者),男,1990年生,博士
潘成成,男,1993年生,博士生张 翔(共同第一作者),男,1990年生,博士第一联系人:潘成成、张翔并列第一作者
图1  热压态和热轧态三维石墨烯网络/Cu复合材料(3D-GLNN/Cu)中石墨烯网络形貌的SEM和TEM像
图2  热压态纯Cu、热压态和热轧态3D-GLNN/Cu复合材料显微组织的OM像
图3  热压态和热轧态3D-GLNN/Cu复合材料显微组织的TEM像
图4  Cu及3D-GLNN/Cu复合材料的Vickers硬度
图5  Cu及三维石墨烯/Cu复合材料在模拟海水中的极化曲线
Sample1 h1 d4 d9 d
Cu-244.04-198.41-200.49-208.16
3D-GLNN/Cu-HP-208.46-188.83-196.50-201.41
3D-GLNN/Cu-HR-232.69-190.67-196.50-196.19
表1  Cu及3D-GLNN/Cu复合材料不同浸泡时间下样品的开路电位 (mVvs SCE)
图6  Cu及3D-GLNN/Cu复合材料在模拟海水中的EIS
图7  Cu及3D-GLNN/Cu复合材料在NaCl中浸泡1 h后的Bode图(欧姆电阻校正后)
图8  Cu、3D-GLNN/Cu-HP和3D-GLNN/Cu-HR复合材料的平均失重速率
图9  Cu及3D-GLNN/Cu复合材料在模拟海水中的电化学等效电路
SampleTimeCeff / (μF·cm-2)αRt / (kΩ·cm2)kc / (s0.5·Ω-1·cm-2)
Cu1 h35.120.751.011.17 × 10-4
1 d28.230.741.251.21 × 10-4
4 d30.780.741.171.18 × 10-4
3D-GLNN/Cu-HP1 h21.480.751.222.23 × 10-4
1 d17.170.741.812.47 × 10-4
4 d20.180.781.122.73 × 10-4
3D-GLNN/Cu-HR1 h22.840.751.172.58 × 10-4
1 d15.470.791.732.94 × 10-4
4 d26.950.782.022.37 × 10-4
表2  电化学等效电路拟合电化学阻抗参数
图10  热压态纯Cu、热压态和热轧态3D-GLNN/Cu复合材料空蚀4 h后显微组织的SEM像
1 Zhang X, Zhao N Q, He C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review [J]. Prog. Mater. Sci., 2020, 113: 100672
doi: 10.1016/j.pmatsci.2020.100672
2 Zhao N Q, Guo S Y, Zhang X, et al. Progress on graphene/copper composites focusing on reinforcement configuration design: A review [J]. Acta Metall. Sin., 2021, 57: 1087
2 赵乃勤, 郭斯源, 张 翔 等. 基于增强相构型设计的石墨烯/Cu复合材料研究进展 [J]. 金属学报, 2021, 57: 1087
doi: 10.11900/0412.1961.2021.00120
3 Zhou X, Liu X X. Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites [J]. Acta Metall. Sin., 2020, 56: 240
3 周 霞, 刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制 [J]. 金属学报, 2020, 56: 240
4 Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
4 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
5 Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process [J]. Adv. Mater., 2013, 25: 6724
doi: 10.1002/adma.201302495
6 Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
doi: 10.1016/j.carbon.2017.02.089
7 Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network [J]. Carbon, 2018, 127: 102
doi: 10.1016/j.carbon.2017.10.099
8 Zhang X, Xu Y X, Wang M C, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites [J]. Nat. Commun., 2020, 11: 2775
doi: 10.1038/s41467-020-16490-4
9 Xia D H, Song S Z, Tao L, et al. Review-material degradation assessed by digital image processing: Fundamentals, progresses, and challenges [J]. J. Mater. Sci. Technol., 2020, 53: 146
doi: 10.1016/j.jmst.2020.04.033
10 Pan C C, Song S Z, Hu W B, et al. Preparation and corrosion resistance of covalent self-assembled monolayers on passive metal surface [J]. Surf. Technol., 2019, 48(12): 43
10 潘成成, 宋诗哲, 胡文彬 等. 钝性金属表面共价结合自组装膜制备及耐蚀性研究进展 [J]. 表面技术, 2019, 48(12): 43
11 Hussain A K, Sudin I, Basheer U M, et al. A review on graphene-based polymer composite coatings for the corrosion protection of metals [J]. Corros. Rev., 2019, 37: 343
doi: 10.1515/corrrev-2018-0097
12 Liang Y, Chen K F, Huang C S, et al. Application research progress of graphene functional coating [J]. Equip. Environ. Eng., 2019, 16(8): 95
12 梁 宇, 陈凯锋, 黄从树 等. 石墨烯在功能涂料中的应用研究进展 [J]. 装备环境工程, 2019, 16(8): 95
13 Chi J H, Chen S, Chen X F, et al. Research progress and application of graphene anticorrosive coatings [J]. Equip. Environ. Eng., 2018, 15(5): 56
13 迟钧瀚, 陈 珊, 陈晓飞 等. 石墨烯在防腐涂料中的研究进展及应用 [J]. 装备环境工程, 2018, 15(5): 56
14 Xia D H, Qin Z B, Song S Z, et al. Combating marine corrosion on engineered oxide surface by repelling, blocking and capturing Cl-: A mini review [J]. Corros. Commun., 2021, 2: 1
doi: 10.1016/j.corcom.2021.09.001
15 Kirkland N T, Schiller T, Medhekar N, et al. Exploring graphene as a corrosion protection barrier [J]. Corros. Sci., 2012, 56: 1
doi: 10.1016/j.corsci.2011.12.003
16 Dong Y H, Liu Q Q, Zhou Q. Corrosion behavior of Cu during graphene growth by CVD [J]. Corros. Sci., 2014, 89: 214
doi: 10.1016/j.corsci.2014.08.026
17 Wang C R, Wang J H, Wen S G, et al. Study on the corrosion resistance of sulfonated graphene/aluminum phosphate composites in waterborne polyurethane coatings [J]. Corros. Rev., 2021, 39: 339
doi: 10.1515/corrrev-2020-0054
18 Yang X, Zhang R H, Pu J B, et al. 2D graphene and h-BN layers application in protective coatings [J]. Corros. Rev., 2021, 39: 93
doi: 10.1515/corrrev-2020-0080
19 Liu X L, Chen S G, Zhang Y J, et al. Preparation of graphene oxide-boron nitride hybrid to reinforce the corrosion protection coating [J]. Corros. Rev., 2021, 39: 123
doi: 10.1515/corrrev-2020-0051
20 Yang N, Fan W J, Li W H. Preparation and corrosion resistance of water-based coatings modified by graphene oxide-polyaniline-silica nano-composite [J]. Equip. Environ. Eng., 2020, 17(4): 105
20 杨 凝, 樊伟杰, 李伟华. 二氧化硅-聚苯胺-氧化石墨烯复合纳米材料改性水性涂层的制备及防腐蚀性能研究 [J]. 装备环境工程, 2020, 17(4): 105
21 Jin B Y, Xiong D B, Tan Z Q, et al. Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes [J]. Carbon, 2019, 142: 482
doi: 10.1016/j.carbon.2018.10.088
22 Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
23 Hucińska J, Głowack M. Cavitation erosion of copper and copper-based alloys [J]. Metall. Mater. Trans., 2001, 32 A: 1325
24 Pan C C, Wang X Z, Behnamian Y, et al. Monododecyl phosphate film on LY12 aluminum alloy: pH-controlled self-assembly and corrosion resistance [J]. J. Electrochem. Soc., 2020, 167: 161510
doi: 10.1149/1945-7111/abd3bb
25 Xia D H, Pan C C, Qin Z B, et al. Covalent surface modification of LY12 aluminum alloy surface by self-assembly dodecyl phosphate film towards corrosion protection [J]. Prog. Org. Coat., 2020, 143: 105638
26 Jorcin J B, Orazem M E, Pébère N, et al. CPE analysis by local electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2006, 51: 1473
doi: 10.1016/j.electacta.2005.02.128
27 Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
doi: 10.1016/j.corsci.2015.05.006
28 Aben T, Tromans D. Anodic polarization behavior of copper in aqueous bromide and bromide/benzotriazole solutions [J]. J. Electrochem. Soc., 1995, 142: 398
doi: 10.1149/1.2044031
29 Xia D H, Song S, Behnamian Y, et al. Review—Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis [J]. J. Electrochem. Soc., 2020, 167: 081507
30 Kittel J, Ropital F, Grosjean F, et al. Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 1: Characterisation of H2S reduction on a 316L rotating disc electrode [J]. Corros. Sci., 2013, 66: 324
doi: 10.1016/j.corsci.2012.09.036
31 Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanalyt. Chem. Interf. Electrochem., 1984, 176: 275
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[7] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[8] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[14] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.