|
|
三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为 |
潘成成, 张翔, 杨帆, 夏大海( ), 何春年, 胡文彬( ) |
天津大学 材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300350 |
|
Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater |
PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai( ), HE Chunnian, HU Wenbin( ) |
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
Chengcheng PAN,
Xiang ZHANG,
Fan YANG,
Dahai XIA,
Chunnian HE,
Wenbin HU.
Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. Acta Metall Sin, 2022, 58(5): 599-609.
1 |
Zhang X, Zhao N Q, He C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review [J]. Prog. Mater. Sci., 2020, 113: 100672
doi: 10.1016/j.pmatsci.2020.100672
|
2 |
Zhao N Q, Guo S Y, Zhang X, et al. Progress on graphene/copper composites focusing on reinforcement configuration design: A review [J]. Acta Metall. Sin., 2021, 57: 1087
|
2 |
赵乃勤, 郭斯源, 张 翔 等. 基于增强相构型设计的石墨烯/Cu复合材料研究进展 [J]. 金属学报, 2021, 57: 1087
doi: 10.11900/0412.1961.2021.00120
|
3 |
Zhou X, Liu X X. Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites [J]. Acta Metall. Sin., 2020, 56: 240
|
3 |
周 霞, 刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制 [J]. 金属学报, 2020, 56: 240
|
4 |
Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
|
4 |
赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
|
5 |
Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process [J]. Adv. Mater., 2013, 25: 6724
doi: 10.1002/adma.201302495
|
6 |
Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
doi: 10.1016/j.carbon.2017.02.089
|
7 |
Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network [J]. Carbon, 2018, 127: 102
doi: 10.1016/j.carbon.2017.10.099
|
8 |
Zhang X, Xu Y X, Wang M C, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites [J]. Nat. Commun., 2020, 11: 2775
doi: 10.1038/s41467-020-16490-4
|
9 |
Xia D H, Song S Z, Tao L, et al. Review-material degradation assessed by digital image processing: Fundamentals, progresses, and challenges [J]. J. Mater. Sci. Technol., 2020, 53: 146
doi: 10.1016/j.jmst.2020.04.033
|
10 |
Pan C C, Song S Z, Hu W B, et al. Preparation and corrosion resistance of covalent self-assembled monolayers on passive metal surface [J]. Surf. Technol., 2019, 48(12): 43
|
10 |
潘成成, 宋诗哲, 胡文彬 等. 钝性金属表面共价结合自组装膜制备及耐蚀性研究进展 [J]. 表面技术, 2019, 48(12): 43
|
11 |
Hussain A K, Sudin I, Basheer U M, et al. A review on graphene-based polymer composite coatings for the corrosion protection of metals [J]. Corros. Rev., 2019, 37: 343
doi: 10.1515/corrrev-2018-0097
|
12 |
Liang Y, Chen K F, Huang C S, et al. Application research progress of graphene functional coating [J]. Equip. Environ. Eng., 2019, 16(8): 95
|
12 |
梁 宇, 陈凯锋, 黄从树 等. 石墨烯在功能涂料中的应用研究进展 [J]. 装备环境工程, 2019, 16(8): 95
|
13 |
Chi J H, Chen S, Chen X F, et al. Research progress and application of graphene anticorrosive coatings [J]. Equip. Environ. Eng., 2018, 15(5): 56
|
13 |
迟钧瀚, 陈 珊, 陈晓飞 等. 石墨烯在防腐涂料中的研究进展及应用 [J]. 装备环境工程, 2018, 15(5): 56
|
14 |
Xia D H, Qin Z B, Song S Z, et al. Combating marine corrosion on engineered oxide surface by repelling, blocking and capturing Cl-: A mini review [J]. Corros. Commun., 2021, 2: 1
doi: 10.1016/j.corcom.2021.09.001
|
15 |
Kirkland N T, Schiller T, Medhekar N, et al. Exploring graphene as a corrosion protection barrier [J]. Corros. Sci., 2012, 56: 1
doi: 10.1016/j.corsci.2011.12.003
|
16 |
Dong Y H, Liu Q Q, Zhou Q. Corrosion behavior of Cu during graphene growth by CVD [J]. Corros. Sci., 2014, 89: 214
doi: 10.1016/j.corsci.2014.08.026
|
17 |
Wang C R, Wang J H, Wen S G, et al. Study on the corrosion resistance of sulfonated graphene/aluminum phosphate composites in waterborne polyurethane coatings [J]. Corros. Rev., 2021, 39: 339
doi: 10.1515/corrrev-2020-0054
|
18 |
Yang X, Zhang R H, Pu J B, et al. 2D graphene and h-BN layers application in protective coatings [J]. Corros. Rev., 2021, 39: 93
doi: 10.1515/corrrev-2020-0080
|
19 |
Liu X L, Chen S G, Zhang Y J, et al. Preparation of graphene oxide-boron nitride hybrid to reinforce the corrosion protection coating [J]. Corros. Rev., 2021, 39: 123
doi: 10.1515/corrrev-2020-0051
|
20 |
Yang N, Fan W J, Li W H. Preparation and corrosion resistance of water-based coatings modified by graphene oxide-polyaniline-silica nano-composite [J]. Equip. Environ. Eng., 2020, 17(4): 105
|
20 |
杨 凝, 樊伟杰, 李伟华. 二氧化硅-聚苯胺-氧化石墨烯复合纳米材料改性水性涂层的制备及防腐蚀性能研究 [J]. 装备环境工程, 2020, 17(4): 105
|
21 |
Jin B Y, Xiong D B, Tan Z Q, et al. Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes [J]. Carbon, 2019, 142: 482
doi: 10.1016/j.carbon.2018.10.088
|
22 |
Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
|
23 |
Hucińska J, Głowack M. Cavitation erosion of copper and copper-based alloys [J]. Metall. Mater. Trans., 2001, 32 A: 1325
|
24 |
Pan C C, Wang X Z, Behnamian Y, et al. Monododecyl phosphate film on LY12 aluminum alloy: pH-controlled self-assembly and corrosion resistance [J]. J. Electrochem. Soc., 2020, 167: 161510
doi: 10.1149/1945-7111/abd3bb
|
25 |
Xia D H, Pan C C, Qin Z B, et al. Covalent surface modification of LY12 aluminum alloy surface by self-assembly dodecyl phosphate film towards corrosion protection [J]. Prog. Org. Coat., 2020, 143: 105638
|
26 |
Jorcin J B, Orazem M E, Pébère N, et al. CPE analysis by local electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2006, 51: 1473
doi: 10.1016/j.electacta.2005.02.128
|
27 |
Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
doi: 10.1016/j.corsci.2015.05.006
|
28 |
Aben T, Tromans D. Anodic polarization behavior of copper in aqueous bromide and bromide/benzotriazole solutions [J]. J. Electrochem. Soc., 1995, 142: 398
doi: 10.1149/1.2044031
|
29 |
Xia D H, Song S, Behnamian Y, et al. Review—Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis [J]. J. Electrochem. Soc., 2020, 167: 081507
|
30 |
Kittel J, Ropital F, Grosjean F, et al. Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 1: Characterisation of H2S reduction on a 316L rotating disc electrode [J]. Corros. Sci., 2013, 66: 324
doi: 10.1016/j.corsci.2012.09.036
|
31 |
Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, et al. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanalyt. Chem. Interf. Electrochem., 1984, 176: 275
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|