|
|
基于增强相构型设计的石墨烯/Cu复合材料研究进展 |
赵乃勤( ), 郭斯源, 张翔, 何春年, 师春生 |
天津大学 材料科学与工程学院 天津 300350 |
|
Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review |
ZHAO Naiqin( ), GUO Siyuan, ZHANG Xiang, HE Chunnian, SHI Chunsheng |
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
Naiqin ZHAO,
Siyuan GUO,
Xiang ZHANG,
Chunnian HE,
Chunsheng SHI.
Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review[J]. Acta Metall Sin, 2021, 57(9): 1087-1106.
1 |
Xu X Z, Yi D, Wang Z C, et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating [J]. Adv. Mater., 2018, 30: 1702944
|
2 |
Arnaud C, Lecouturier F, Mesguich D, et al. High strength-high conductivity double-walled carbon nanotube-copper composite wires [J]. Carbon, 2016, 96: 212
|
3 |
Uddin S M, Mahmud T, Wolf C, et al. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites [J]. Compos. Sci. Technol., 2010, 70: 2253
|
4 |
Baig Z, Mamat O, Mustapha M. Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: A review [J]. Crit. Rev. Solid State Mater. Sci., 2018, 43: 1
|
5 |
Kang Q P, He X B, Ren S B, et al. Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles [J]. Mater. Charact., 2015, 105: 18
|
6 |
Deng H, Yi J H, Xia C, et al. Improving the mechanical properties of carbon nanotube-reinforced pure copper matrix composites by spark plasma sintering and hot rolling [J]. Mater. Lett., 2018, 210: 177
|
7 |
Chen X F, Tao J M, Yi J H, et al. Balancing the strength and ductility of carbon nanotubes reinforced copper matrix composites with microlaminated structure and interdiffusion interface [J]. Mater. Sci. Eng., 2018, A712: 790
|
8 |
Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
|
9 |
Feng M Q, Jia S G, Li S L, et al. Research progress of Cu/C composites [J]. Trans. Mater. Heat Treat., 2020, 41(12): 25
|
9 |
冯孟奇, 贾淑果, 李韶林等. 铜/碳复合材料的研究进展 [J]. 材料热处理学报, 2020, 41(12): 25
|
10 |
Fan T X, Liu Y, Yang K M, et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 16
|
10 |
范同祥, 刘 悦, 杨昆明等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展 [J]. 金属学报, 2019, 55: 16
|
11 |
Yoon D, Son Y W, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy [J]. Nano Lett., 2011, 11: 3227
|
12 |
Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438: 197
|
13 |
Sun Z Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources [J]. Nature, 2010, 468: 549
|
14 |
Wang G R, Dai Z H, Xiao J K, et al. Bending of multilayer van der Waals materials [J]. Phys. Rev. Lett., 2019, 123: 116101
|
15 |
Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385
|
16 |
Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
|
16 |
赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
|
17 |
Geng L, Fan G H. Progress on strengthening and toughening mechanism for metal matrix composites by configuration design [J]. Mater. China, 2016, 35: 686
|
17 |
耿 林, 范国华. 金属基复合材料的构型强韧化研究进展 [J]. 中国材料进展, 2016, 35: 686
|
18 |
Jiang R R, Zhou X F, Fang Q L, et al. Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties [J]. Mater. Sci. Eng., 2016, A654: 124
|
19 |
Jia Z F, Li H Q, Zhao Y, et al. Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites [J]. J. Mater. Sci., 2017, 52: 11620
|
20 |
Luo H B, Sui Y W, Qi J Q, et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles [J]. J. Alloys Compd., 2017, 729: 293
|
21 |
Tang Y X, Yang X M, Wang R R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids [J]. Mater. Sci. Eng., 2014, A599: 247
|
22 |
Zhang D D, Zhan Z J. Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties [J]. J. Alloys Compd., 2016, 658: 663
|
23 |
Gao X, Yue H Y, Guo E J, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites [J]. Powder Technol., 2016, 301: 601
|
24 |
Shao G S, Liu P, Zhang K, et al. Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering [J]. Mater. Sci. Eng., 2019, A739: 329
|
25 |
Cui R, Han Y, Zhu Z X, et al. Investigation of the structure and properties of electrodeposited Cu/graphene composite coatings for the electrical contact materials of an ultrahigh voltage circuit breaker [J]. J. Alloys Compd., 2019, 777: 1159
|
26 |
Pavithra C L P, Sarada B V, Rajulapati K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness [J]. Sci. Rep., 2014, 4: 4049
|
27 |
Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process [J]. Adv. Mater., 2013, 25: 6724
|
28 |
Wang S Y, Han S B, Xin G Q, et al. High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites [J]. Mater. Des., 2018, 139: 181
|
29 |
Chen Y K, Zhang X, Liu E Z, et al. Fabrication of in-situ grown graphene reinforced Cu matrix composites [J]. Sci. Rep., 2016, 6: 19363
|
30 |
Yang Z Y, Wang L D, Cui Y, et al. High strength and ductility of graphene-like carbon nanosheet/copper composites fabricated directly from commercial oleic acid coated copper powders [J]. Nanoscale, 2018, 10: 16990
|
31 |
Wang M, Wang L D, Sheng J, et al. Direct synthesis of high-quality graphene on Cu powders from adsorption of small aromatic hydrocarbons: A route to high strength and electrical conductivity for graphene/Cu composite [J]. J. Alloys Compd., 2019, 798: 403
|
32 |
Yao G C, Mei Q S, Li J Y, et al. Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding [J]. Mater. Des., 2016, 110: 124
|
33 |
Xiong D B, Cao M, Guo Q, et al. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: Bioinspired strategy for strengthening-toughening of metal matrix composite [J]. ACS Nano, 2015, 9: 6934
|
34 |
Xiong D B, Cao M, Guo Q, et al. High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability [J]. Sci. Rep., 2016, 6: 33801
|
35 |
Yang Z Y, Wang L D, Shi Z D, et al. Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength [J]. Carbon, 2018, 127: 329
|
36 |
Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network [J]. Carbon, 2018, 127: 102
|
37 |
Chu K, Wang X H, Li Y B, et al. Thermal properties of graphene/metal composites with aligned graphene [J]. Mater. Des., 2018, 140: 85
|
38 |
Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
|
39 |
Guo S, Zhang X, Shi C, et al. In situ synthesis of high content graphene nanoplatelets reinforced Cu matrix composites with enhanced thermal conductivity and tensile strength [J]. Powder Technol., 2020, 362: 126
|
40 |
Zhang X, Shi C S, Liu E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network [J]. Nanoscale, 2017, 9: 11929
|
41 |
Chen Y K, Zhang X, Liu E Z, et al. Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism [J]. J. Alloys Compd., 2016, 688: 69
|
42 |
Zhang X, Xu Y X, Wang M C, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites [J]. Nat. Commun., 2020, 11: 2775
|
43 |
Qiao Z J, Zhou T, Kang J L, et al. Three-dimensional interpenetrating network graphene/copper composites with simultaneously enhanced strength, ductility and conductivity [J]. Mater. Lett., 2018, 224: 37
|
44 |
Luo H B, Sui Y W, Qi J Q, et al. Copper matrix composites enhanced by silver/reduced graphene oxide hybrids [J]. Mater. Lett., 2017, 196: 354
|
45 |
Zhu Y B, Bai H, Xue C, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface [J]. RSC Adv., 2016, 6: 98190
|
46 |
Chu K, Wang J, Liu Y P, et al. Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites [J]. Carbon, 2018, 140: 112
|
47 |
Zhang X, Shi C S, Liu E Z, et al. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites [J]. ACS Appl. Mater. Interfaces, 2018, 10: 37586
|
48 |
Guo S Y, Zhang X, Shi C S, et al. Enhanced mechanical properties and electrical conductivity of graphene nanoplatelets/Cu composites by in situ formation of Mo2C nanoparticles [J]. Mater. Sci. Eng., 2019, A766: 138365
|
49 |
Chu K, Wang F, Li Y B, et al. Interface structure and strengthening behavior of graphene/CuCr composites [J]. Carbon, 2018, 133: 127
|
50 |
Zhang X, Zhao N Q, He C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review [J]. Prog. Mater. Sci., 2020, 113: 100672
|
51 |
Tian Y Z, Wu S D, Zhang Z F, et al. Microstructural evolution and mechanical properties of a two-phase Cu-Ag alloy processed by high-pressure torsion to ultrahigh strains [J]. Acta Mater., 2011, 59: 2783
|
52 |
Shin S E, Choi H J, Shin J H, et al. Strengthening behavior of few-layered graphene/aluminum composites [J]. Carbon, 2015, 82: 143
|
53 |
Kim W J, Lee T J, Han S H. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties [J]. Carbon, 2014, 69: 55
|
54 |
Sun C, Zhang X, Zhao N Q, et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene-like network reinforced Cu matrix composites [J]. Mater. Sci. Eng., 2019, A756: 82
|
55 |
Chu K, Wang F, Wang X H, et al. Anisotropic mechanical properties of graphene/copper composites with aligned graphene [J]. Mater. Sci. Eng., 2018, A713: 269
|
56 |
Kim Y, Lee J, Yeom M S, et al. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites [J]. Nat. Commun., 2013, 4: 2114
|
57 |
Li Z, Wang H T, Guo Q, et al. Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries [J]. Nano Lett., 2018, 18: 6255
|
58 |
Güler Ö, Bağcı N. A short review on mechanical properties of graphene reinforced metal matrix composites [J]. J. Mater. Res. Technol., 2020, 9: 6808
|
59 |
Cao M, Xiong D B, Yang L, et al. Ultrahigh electrical conductivity of graphene embedded in metals [J]. Adv. Funct. Mater., 2019, 29: 1806792
|
60 |
Salvo C, Mangalaraja R V, Udayabashkar R, et al. Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites [J]. J. Alloys Compd., 2019, 777: 309
|
61 |
Behera A K, Mallik A. Ultrasound assisted electroplating of nano-composite thin film of Cu matrix with electrochemically in-house synthesized few layer graphene nano-sheets as reinforcement [J]. J. Alloys Compd., 2018, 750: 587
|
62 |
Chen F Y, Ying J M, Wang Y F, et al. Effects of graphene content on the microstructure and properties of copper matrix composites [J]. Carbon, 2016, 96: 836
|
63 |
Kim S J, Shin D H, Choi Y S, et al. Ultrastrong graphene-copper core-shell wires for high-performance electrical cables [J]. ACS Nano, 2018, 12: 2803
|
64 |
Shuai J, Xiong L Q, Zhu L, et al. Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite [J]. Composites, 2016, 88A: 148
|
65 |
Zhang B B, Tao N R, Lu K. A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins [J]. Scr. Mater., 2017, 129: 39
|
66 |
Mao P Y, Qiao J X, Zhao Y, et al. Ultrahigh thermal stability of carbon encapsulated Cu nanograin on a carbon nanotube scaffold [J]. Carbon, 2021, 172: 712
|
67 |
Lee H C, Jo M, Lim H, et al. Toward near-bulk resistivity of Cu for next-generation nano-interconnects: Graphene-coated Cu [J]. Carbon, 2019, 149: 656
|
68 |
Ahn Y, Jeong Y, Lee D, et al. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes [J]. ACS Nano, 2015, 9: 3125
|
69 |
Boden A, Boerner B, Kusch P, et al. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites [J]. Nano Lett., 2014, 14: 3640
|
70 |
Firkowska I, Boden A, Boerner B, et al. The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites [J]. Nano Lett., 2015, 15: 4745
|
71 |
Cao H J, Xiong D B, Tan Z Q, et al. Thermal properties of in situ grown graphene reinforced copper matrix laminated composites [J]. J. Alloys Compd., 2019, 771: 228
|
72 |
Yang K M, Ma Y C, Zhang Z Y, et al. Anisotropic thermal conductivity and associated heat transport mechanism in roll-to-roll graphene reinforced copper matrix composites [J]. Acta Mater., 2020, 197: 342
|
73 |
Cho S C, Kikuchi K, Kawasaki A. On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite [J]. Acta Mater., 2012, 60: 726
|
74 |
Kim K T, Eckert J, Liu G, et al. Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing [J]. Scr. Mater., 2011, 64: 181
|
75 |
Cho S C, Kikuchi K, Miyazaki T, et al. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites [J]. Scr. Mater., 2010, 63: 375
|
76 |
Chu K, Wu Q Y, Jia C C, et al. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications [J]. Compos. Sci. Technol., 2010, 70: 298
|
77 |
He J S, Wang X T, Zhang Y, et al. Thermal conductivity of Cu-Zr/diamond composites produced by high temperature-high pressure method [J]. Composites, 2015, 68B: 22
|
78 |
Bai G Z, Li N, Wang X T, et al. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration [J]. J. Alloys Compd., 2018, 735: 1648
|
79 |
Chang G, Sun F Y, Duan J L, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond [J]. Acta. Mater., 2018, 160: 235
|
80 |
Li J W, Zhang H L, Wang L H, et al. Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration [J]. Composites, 2016, 91A: 189
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|