Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 428-443    DOI: 10.11900/0412.1961.2021.00516
  综述 本期目录 | 过刊浏览 |
原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状
王浩伟(), 赵德超, 汪明亮
上海交通大学 材料科学与工程学院 上海 200240
A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites
WANG Haowei(), ZHAO Dechao, WANG Mingliang
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
Haowei WANG, Dechao ZHAO, Mingliang WANG. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. Acta Metall Sin, 2022, 58(4): 428-443.

全文: PDF(5966 KB)   HTML
摘要: 

原位自生TiB2/Al基复合材料是具有优异综合力学性能和机械加工性能的高性能结构材料。在众多工况条件下,复合材料耐蚀性能是设计者们需要考虑的关键要素之一。由于TiB2颗粒和Al基体间的微电偶腐蚀以及TiB2颗粒对复合材料Al基体表面天然氧化膜层连续性破坏等因素,降低了此类复合材料的耐蚀性。TiB2/Al基复合材料的表面处理与腐蚀防护技术的开发显得尤为迫切。针对这一问题,本文主要基于现有的阳极氧化和稀土转化膜技术、低温熔盐沉积技术、微弧氧化技术等表面改性方法,综述了原位自生TiB2/Al基复合材料表面改性及其腐蚀防护技术的研究进展,并对此类复合材料表面改性工艺技术发展方向提出合理建议。新型高效表面处理与腐蚀防护工艺的采用将为原位自生TiB2/Al基复合材料在航空、航天、航海、武器装备、轨道交通、汽车轻量化等领域的更大规模应用提供有效技术保障。

关键词 原位自生TiB2/Al基复合材料表面处理腐蚀防护涂层    
Abstract

In situ TiB2/Al-based composites are high-performance structural materials with excellent overall mechanical properties and machining properties. One of the critical factors in many practical situations is the composites' corrosive resistance. Microgalvanic corrosion occurs between TiB2 particles and the Al matrix in TiB2/Al composites as well as a negative effect of TiB2 particles on the continuous passive layer is observed, resulting in lower corrosive-resistant performance. As a result, developing surface treatment and corrosion protection technology for TiB2/Al composites is especially important. Regarding this problem, this paper mainly reviews the surface modification methods of in situ TiB2/Al composites, including the anodic oxidation and rare earth conversion coating technology, low-temperature molten-salt deposition technology, and microarc oxidation technology. Furthermore, reasonable suggestions for future development on the surface protection technology of TiB2/Al composites are made. The adoption of novel high-efficiency surface treatment and corrosion protection technology should provide effective technical support for the increasing large-scale application of in situ TiB2/Al composites in aviation, aerospace, navigation, national defense, railway transportation, and automotive industrial fields.

Key wordsin situ TiB2/Al composites    surface treatment    corrosion protection    coating
收稿日期: 2021-11-29     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51971137);国家自然科学基金项目(52001203);国家自然科学基金项目(52075327);国家自然科学基金项目(52004160);国家自然科学基金项目(52071207);国家自然科学基金项目(52101043);国家自然科学基金项目(52101179)
作者简介: 王浩伟,男,1966年生,教授,博士
图1  A356铝合金和不同TiB2含量复合材料的Nyquist图、Bode图、极化曲线以及极化后试样腐蚀形貌[15]
图2  原位自生TiB2/7050Al在不同pH值溶液中的Nyquist图、Bode图、极化曲线及不同pH值条件下静态浸泡8 d后试样腐蚀形貌[16]
图3  原位自生TiB2/A356复合材料氧化膜形貌,阳极氧化膜表面化学沉积铈转化膜形貌,复合材料表面铈转化膜的XPS Ce3d谱,复合材料、表面阳极氧化膜以及铈转化膜极化曲线,以及铈转化膜形成示意图[23,24]
图4  阳极氧化TiB2/A356复合材料表面阴极电解沉积铈膜形貌以及铈沉积膜在不连续复合材料氧化膜表面形成过程示意图[26]
图5  电沉积铝层在不同沉积时间下的SEM像及其对应的形成机制,基体上形成的二维和三维铝晶核示意图,纯Al、A356、TiB2/A356复合材料和TiB2/A356复合材料电沉积铝层在3.5%NaCl溶液中的极化曲线[30]
图6  铝层和基体截面形貌[37],TiB2/A356复合材料表面电沉积铝层阳极氧化膜形貌[27],阳极氧化后复合材料、电解沉积铝层以及纯Al的Bode图[37],阳极氧化后复合材料、电解沉积铝层以及纯Al的极化曲线[37]
图7  TiB2/A201复合材料和微弧氧化膜层空泡腐蚀后的宏观形貌[43]
图8  微弧氧化膜层空泡腐蚀不同时间后微观形貌,累计失重量与空蚀时间关系曲线,TiB2/A201复合材料和微弧氧化膜层在3.5%NaCl溶液中极化曲线,以及微弧氧化膜层截面图[43]
图9  碱性电解质中添加和不添加KMnO4的微弧氧化膜层,微弧氧化膜层的XPS分析,添加KMnO4膜层的Mn2p图谱[47]
图10  电阻缝加工法制备原位自生TiB2/铝合金基复合材料表面高/中熵合金涂层示意图
1 Bhuvaneswari V, Rajeshkumar L, Nimel Sworna Ross K. Influence of bioceramic reinforcement on tribological behaviour of aluminium alloy metal matrix composites: Experimental study and analysis [J]. J. Mater. Res. Technol., 2021, 15: 2802
2 Zhao S L, Zhang H M, Cui Z S, et al. Superplastic behavior of an in-situ TiB2 particle reinforced aluminum matrix composite processed by elliptical cross-section torsion extrusion [J]. Mater. Charact., 2021, 178: 111243
3 Dong B X, Li Q, Wang Z F, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution [J]. Composites, 2021, 217B: 108912
4 Taheri-Nassaj E, Kobashi M, Choh T. Fabrication and analysis of an in situ TiB2Al composite by reactive spontaneous infiltration [J]. Scr. Mater., 1996, 34: 1257
5 Tee K L, Lu L, Lai M O. Synthesis of in situ Al-TiB2 composites using stir cast route [J]. Compos. Struct., 1999, 47: 589
6 Lu L, Lai M O, Chen F L. Al-4 wt% Cu composite reinforced with in-situ TiB2 particles [J]. Acta Mater., 1997, 45: 4297
7 Ma Z Y, Tjong S C. High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite [J]. Mater. Sci. Eng., 2000, A284: 70
8 Han Y F, Liu X F, Bian X F. In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites [J]. Composites, 2002, 33A: 439
9 Wang H W. Preparation and application of in-situ ceramic particles reinforced Al matrix composites [J]. Aeronaut. Manuf. Technol., 2021, 64(16): 14
9 王浩伟. 原位自生陶瓷颗粒增强铝基复合材料制备及应用 [J]. 航空制造技术, 2021, 64(16): 14
10 Le Y K. Study on in-situ A356/TiB2 composite and its solid-state phase transformation process [D]. Shanghai: Shanghai Jiao Tong University, 2006
10 乐永康. 原位合成A356/TiB2复合材料及其固态相变过程的研究 [D]. 上海: 上海交通大学, 2006
11 Zhang Y J. High-damping and high-strength cast aluminum-based composite material [D]. Shanghai: Shanghai Jiao Tong University, 2006
11 张亦杰. 高阻尼高强度铸造铝基复合材料 [D]. 上海: 上海交通大学, 2006
12 Chen D. Preparation and properties of in-situ TiB2/7055 aluminum matrix composite [D]. Shanghai: Shanghai Jiao Tong University, 2008
12 陈 东. 原位合成TiB2/7055铝基复合材料的制备与性能 [D]. 上海: 上海交通大学, 2008
13 He C L, Cai Q K. Recent developments in research on corrosion of aluminum metal matrix composites [J]. Mater. Rep., 2003, 17(1):45
13 贺春林, 才庆魁. 铝金属基复合材料的腐蚀研究进展 [J]. 材料导报, 2003, 17(1): 45
14 Nie J F, Wang F, Chen Y Y, et al. Microstructure and corrosion behavior of Al-TiB2/TiC composites processed by hot rolling [J]. Results Phys., 2019, 14: 102471
15 Sun H H, Chen D, Li X F, et al. Electrochemical corrosion behavior of Al-Si alloy composites reinforced with in situ TiB2 particulate [J]. Mater Corros., 2009, 60: 419
16 Huang J, Chen D, Wu Y, et al. Corrosion behavior of in-situ TiB2/7050Al composite in NaCl solution at different pH values [J]. Mater. Res. Express, 2019, 6: 056541
17 Hinton B R W, Arnott D R, Ryan N E. The inhibition of aluminium alloy corrosion by cerous cations [J]. Met. Forum., 1984, 7: 211
18 Mansfeld F, Lin S, Kim K, et al. Pitting and surface modification of SIC/Al [J]. Corros. Sci., 1987, 27: 997.
19 Mansfeld F, Lin S, Kim S, et al. Corrosion protection of Al alloys and Al-based metal matrix composites by chemical passivation [J]. Corrosion, 1989, 45: 615
20 Mansfeld F, Lin S, Kim S, et al. Pitting and passivation of Al alloys and Al-based metal matrix composites [J]. J. Electrochem. Soc., 1990, 137: 78
21 Yu X W, Cao C A, Yao Z M. Application of rare earth metal salts in sealing anodized aluminum alloy [J]. J. Mater. Sci. Lett., 2000, 19: 1907
22 Hu J, Zhao X H, Tang S W, et al. Corrosion protection of aluminum borate whisker reinforced AA6061 composite by cerium oxide-based conversion coating [J]. Surf. Coat. Technol., 2006, 201: 3814
23 Sun H H, Ma N H, Chen D, et al. Fabrication and analysis of anti-corrosion coatings on in-situ TiB2p reinforced aluminum matrix composite [J]. Surf. Coat. Technol., 2008, 203: 329
24 Sun H H, Wang H W, Chen D, et al. Conversion-coating treatment applied to in situ TiB2p reinforced Al-Si-alloy composite forcorrosion protection [J]. Surf. Interface Anal., 2008, 40:1388
25 Dabalà M, Armelao L, Buchberger A, et al. Cerium-based conversion layers on aluminum alloys [J]. Appl. Surf. Sci., 2001, 172: 312
26 Sun H H, Li X F, Chen D, et al. Enhanced corrosion resistance of discontinuous anodic film on in situ TiB2p/A356 composite by cerium electrolysis treatment [J]. J. Mater. Sci., 2009, 44: 786
27 Huang W M. Study on low temperature molten salt deposition of anticorrosive aluminum layer in in-situ TiB2/Al matrix composite material [D]. Shanghai: Shanghai Jiao Tong University, 2013
27 黄文貌. 原位自生TiB2/铝基复合材料低温熔盐沉积防腐铝层研究 [D]. 上海: 上海交通大学, 2013
28 Chen Z P. Special Electroplating Technology [M]. Beijing: Chemical Industry Press, 2004: 1
28 陈祝平. 特种电镀技术 [M]. 北京: 化学工业出版社, 2004: 1
29 Kan H M. Study on low temperature aluminium electrolysis [D]. Shenyang: Northeastern University, 2007
29 阚洪敏. 低温铝电解的研究 [D]. 沈阳: 东北大学, 2007
30 Huang W M, Liu B, Wang M L, et al. Study on the initial electrodeposition behavior of aluminum on TiB2/A356 composite [J]. Mater. Corros., 2014, 65: 502
31 Kunieda M, Katoh R, Mori Y. Rapid prototyping by selective electrodeposition using electrolyte jet [J]. CIRP Ann., 1998, 47: 161
32 Qin X J, Shao G J. Study on the initial electro-deposition behavior of Ni-P alloy [J]. J. Chin. Soc. Corros. Prot., 2004, 24(1): 6
32 秦秀娟, 邵光杰. 电沉积Ni-P合金初期沉积行为的研究 [J]. 中国腐蚀与防护学报, 2004, 24(1): 6
33 Wang C L, Zhou L H, Hu X H, et al. Density functional theory on characteristics of TiB2(0001) surface [J]. Chin. J. Nonferrous Met., 2008, 18: 145
33 王春雷, 周理海, 胡雪慧 等. TiB2(0001)表面性质的密度泛函理论 [J]. 中国有色金属学报, 2008, 18: 145
34 Yang J, Chen Q J, Lin Z D, et al. An experimental study: Heteroepitaxial growth of diamond thin films on silicon (111) surface [J]. Prog. Nat. Sci., 1995, 5: 233
35 Plitzko J, Rösler M, Nickel K G. Heteroepitaxial growth of diamond thin films on silicon: Information transfer by epitaxial tilting [J]. Diam. Relat. Mater., 1997, 6: 935
36 Shao G J, Chen L, Wang F Y, et al. Study on the initial electrodeposition behavior of Ni-P alloys [J]. Mater. Chem. Phys., 2005, 90: 327
37 Huang W M, Zhou C, Liu B, et al. Improvement in the corrosion resistance of TiB2/A356 composite by molten-salt electrodeposition and anodization [J]. Surf. Coat. Technol., 2012, 206: 4988
38 Zhang S, Zhang C H, Zhang L T, et al. Cavitation erosion and microstructure of laser surface cladding MMC of SiCp on AA6061 aluminium alloy [J]. J. Mater. Eng., 2002, (2): 47
38 张 松, 张春华, 张录廷 等. 铝合金表面激光熔覆SiC颗粒增强表层金属基复合材料的组织及空泡腐蚀性能 [J]. 材料工程, 2002, (2): 47
39 Yang Z, Tian J M. Cavitation erosion of structural ceramics [J]. J. Funct. Mater., 2003, 34: 200
39 杨 政, 田杰谟. 结构陶瓷的空蚀性研究 [J]. 功能材料, 2003, 34: 200
40 Sah S P, Tsuji E, Aoki Y, et al. Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte—Understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation [J]. Corros. Sci., 2012, 55: 90
41 Wang D Y, Dong Q, Chen C Z, et al. Recent progress of micro-arc oxidation technique [J]. J. Chin. Ceram. Soc., 2005, 33: 1133
41 王德云, 东 青, 陈传忠 等. 微弧氧化技术的研究进展 [J]. 硅酸盐学报, 2005, 33: 1133
42 Xue W B, Jin Q, Zhu Q Z, et al. Anti-corrosion microarc oxidation coatings on SiCp/AZ31 magnesium matrix composite [J]. J. Alloys Compd., 2009, 482: 208
43 Zhang H B. Study on the preparation and corrosion resistance of the micro-arc oxidation film of in-situ TiB2/A201 composite [D]. Shanghai: Shanghai Jiao Tong University, 2017
43 张弘斌. 原位自生TiB2/A201复合材料微弧氧化膜层的制备及其耐蚀性能研究 [D]. 上海: 上海交通大学, 2017
44 Wang L Q, Zhou J S, Liang J, et al. Thermal control coatings on magnesium alloys prepared by plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2013, 280: 151
45 Han J X, Cheng Y L, Tu W B, et al. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte [J]. Appl. Surf. Sci., 2018, 428: 684
46 Jiang Y L, Wang J K, Hu B, et al. Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation [J]. Surf. Coat. Technol., 2016, 307: 1297
47 Xia C J, Huang J, Tao J M, et al. The preparation and properties of the brown film by micro-arc oxidized on in-situ TiB2/7050Al matrix composites [J]. Coatings, 2020, 10: 615
48 Li K, Li W F, Zhang G G, et al. Preparation of black PEO layers on Al-Si alloy and the colorizing analysis [J]. Vacuum, 2015, 111: 131
49 Man H C, Zhang S, Yue T M, et al. Laser surface alloying of NiCrSiB on Al6061 aluminium alloy [J]. Surf. Coat. Technol., 2001, 148: 136
50 Tomida S, Nakata K, Saji S, et al. Formation of metal matrix composite layer on aluminum alloy with TiC-Cu powder by laser surface alloying process [J]. Surf. Coat. Technol., 2001, 142-144: 585
51 Chi Y M, Gong G H, Zhao L J, et al. In-situ TiB2-TiC reinforced Fe-Al composite coating on 6061 aluminum alloy by laser surface modification [J]. J. Mater. Process. Technol., 2021, 294: 117107
52 Rokni M R, Nutt S R, Widener C A, et al. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray [J]. J. Therm. Spray Technol., 2017, 26: 1308
53 Raoelison R N, Xie Y, Sapanathan T, et al. Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date [J]. Addit. Manuf., 2018, 19: 134
54 Li W Y, Zhang C, Guo X P, et al. Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2007, 254: 517
55 Xie X L, Chen C Y, Ji G, et al. A novel approach for fabricating a CNT/AlSi composite with the self-aligned nacre-like architecture by cold spraying [J]. Nano Mater. Sci., 2019, 1: 137
56 Meydanoglu O, Jodoin B, Kayali E S. Microstructure, mechanical properties and corrosion performance of 7075 Al matrix ceramic particle reinforced composite coatings produced by the cold gas dynamic spraying process [J]. Surf. Coat. Technol., 2013, 235: 108
57 Xie X L, Hosni B, Chen C Y, et al. Corrosion behavior of cold sprayed 7075Al composite coating reinforced with TiB2 nanoparticles [J]. Surf. Coat. Technol., 2020, 404: 126460
58 De P S, Mishra R S. Friction stir welding of precipitation strengthened aluminium alloys: Scope and challenges [J]. Sci. Technol. Weld. Joining, 2011, 16: 343
59 Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction-stir welding—Process, weldment structure and properties [J]. Prog. Mater. Sci., 2008, 53: 980
60 Sharma R, Singh A K, Arora A, et al. Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1383
61 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
62 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
63 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
64 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
65 Li J C, Huang Y X, Meng X C, et al. A review on high entropy alloys coatings: Fabrication processes and property assessment [J]. Adv. Eng. Mater., 2019, 21: 1900343
66 Li W, Liu P, Liaw P K, Microstructures and properties of high-entropy alloy films and coatings : A review [J]. Mater. Res. Lett., 2018, 6: 199
67 Yan X H, Li J S, Zhang W R, et al. A brief review of high-entropy films [J]. Mater. Chem. Phys., 2018, 210: 12
68 Lu J B, Wang B F, Qiu X K, et al. Microstructure evolution and properties of CrCuFe x NiTi high-entropy alloy coating by plasma cladding on Q235 [J]. Surf. Coat. Technol., 2017, 328: 313
69 Li X F, Feng Y H, Liu B, et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding [J]. J. Alloys Compd., 2019, 788: 485
70 Tüten N, Canadinc D, Motallebzadeh A, et al. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti-6Al-4V substrates [J]. Intermetallics, 2019, 105: 99
71 Tian Y, Shen Y F, Lu C Y, et al. Microstructures and oxidation behavior of Al-CrMnFeCoMoW composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method [J]. J. Alloys Compd., 2019, 779: 456
72 Zhao D C, Yamaguchi T, Shu J F, et al. Rapid fabrication of the continuous AlFeCrCoNi high entropy alloy coating on aluminum alloy by resistance seam welding [J]. Appl. Surf. Sci., 2020, 517: 145980
73 Zhao D C, Yamaguchi T, Tusbasa D, et al. Fabrication and friction properties of the AlFeCrCo medium-entropy alloy coatings on magnesium alloy [J]. Mater. Des., 2020, 193: 108872
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[5] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[6] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[7] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[8] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[10] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[11] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[12] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[13] 李文亚, 张正茂, 徐雅欣, 宋志国, 殷硕. 冷喷涂Ni及镍基复合涂层研究进展[J]. 金属学报, 2022, 58(1): 1-16.
[14] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[15] 郭磊, 高远, 叶福兴, 张馨木. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.