Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1478-1488    DOI: 10.11900/0412.1961.2022.00187
  研究论文 本期目录 | 过刊浏览 |
热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响
陈润, 王帅(), 安琦, 张芮, 刘文齐, 黄陆军, 耿林
哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites
CHEN Run, WANG Shuai(), AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
Run CHEN, Shuai WANG, Qi AN, Rui ZHANG, Wenqi LIU, Lujun HUANG, Lin GENG. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. Acta Metall Sin, 2022, 58(11): 1478-1488.

全文: PDF(5032 KB)   HTML
摘要: 

对不同增强相含量的TiBw/TC18进行了热挤压与热处理,利用OM、SEM、TEM及电子万能试验机研究了热挤压与热处理对复合材料的组织与拉伸性能的影响。结果表明,通过β单相区挤压变形,TiBw/TC18的β晶粒由70 μm减小到40 μm左右,TiBw呈定向排列。挤压态TiBw/TC18通过三重退火与固溶时效处理后,基体组织变为不同尺寸的α相分布在β相基底上,这种多尺度的组织使TiBw/TC18获得了优异的综合性能。力学性能测试结果表明,挤压处理可明显提升烧结态TiBw/TC18复合材料的延伸率,但强度下降17%。经三重退火处理后,2.0%TiBw/TC18 (体积分数)的抗拉强度和延伸率分别达到1200 MPa和21.7%,较烧结态分别提高了5.5%和189%。而采用固溶时效处理后,2.0%TiBw/TC18复合材料的抗拉强度和延伸率分别为1389 MPa和9.9 %,较烧结态分别提高了22.2%和32%。2种热处理制度均实现了复合材料强度和塑性的协同提升。网状结构TiBw/TC18通过挤压与不同制度的热处理可以调控其性能,以满足不同服役条件的使用需求。

关键词 钛基复合材料热挤压网状结构热处理力学性能    
Abstract

To improve the comprehensive performance of Ti matrix composites for defense applications such as aviation and aerospace, as-sintered TiBw/TC18 composites with different reinforcement contents were hot extruded and heat-treated. The composites were characterized and analyzed by OM, SEM, and TEM. The mechanical properties of the composites were measured using an electronic universal testing machine. By extruding in the β single-phase region, the β grain size of TiBw/TC18 was reduced from 70 μm to about 40 μm. After the subsequent triple-annealing or solution aging heat treatment, α phase with different sizes was precipitated and distributed in the β phase. The elongation of the as-extruded composites significantly showed improvement, but the strength decreased by about 17%. After applying the triple-annealing heat treatment, the tensile strength and elongation of 2.0%TiBw/TC18 (volume fraction) reached 1200 MPa and 21.7%, which are higher by 5.5% and 189%, respectively, than those in the sintered state. Moreover, after applying the solution aging heat treatment, the as-extruded 2.0%TiBw/TC18 exhibited tensile strength and elongation of 1389 MPa and 9.9%, which are higher by 22.2% and 32%, respectively, than those exhibited by as-sintered 2.0%TiBw/TC18. Consequently, the hot extrusion can effectively reduce the grain size of as-sintered TiBw/TC18, and the tensile properties of the extruded TiBw/TC18 can be modified to meet the requirements of different service conditions through different subsequent heat treatments.

Key wordstitanium matrix composite    hot extrusion    network microstructure    heat treatment    mechanical property
收稿日期: 2022-04-21     
ZTFLH:  TB33  
基金资助:国家重点研发计划项目(2021YFB3701203);国家自然科学基金项目(52171137);国家自然科学基金项目(52071116);黑龙江省自然科学基金项目(TD2020E001);黑龙江省博士后基金项目(LBH-Z20058)
作者简介: 陈 润,男,1990年生,博士生
图1  烧结态复合材料OM像、挤压棒材EBSD分析取样位置及挤压态材料热处理过程示意图
图2  挤压态1.0%TiBw/TC18不同部位的EBSD分析
图3  不同体积分数TiBw/TC18的OM像
图4  不同体积分数TiBw/TC18经不同热处理后的OM与SEM像
图5  三重退火态2.0%TiBw/TC18的TEM、HRTEM像及快速Fourier变换
图6  不同状态TiBw/TC18复合材料拉伸应力-应变曲线
StateV / %σ0.2 / MPaσb / MPaδ / %
As-sintered[21]01082 ± 17.61151 ± 100.6 ± 0.5
0.51052 ± 4.41171 ± 6.215.6 ± 0.5
1.01023 ± 9.81140 ± 3.213.5 ± 1.0
2.01041 ± 7.31137 ± 2.57.5 ± 1.1
As-extruded0804 ± 19890 ± 18.56.5 ± 3.5
0.5786 ± 8881 ± 9.519.4 ± 3.4
1.0853 ± 7925 ± 129.7 ± 0.3
2.0876 ± 4946 ± 3.526 ± 0.1
Triple-annealing state01040 ± 131139 ± 13.522.6 ± 0.7
0.51073 ± 11175 ± 319.7 ± 0.5
1.01093 ± 3.51191 ± 424.5 ± 0.9
2.01097 ± 2.51200 ± 7.521.7 ± 1.9
Solution aging state01208 ± 31310 ± 14.59 ± 0.1
0.51263 ± 191337 ± 76.4 ± 0.5
1.01280 ± 81374 ± 1012 ± 0.1
2.01296 ± 181389 ± 79.9 ± 0.6
表1  不同状态下TiBw/TC18复合材料的拉伸性能
图7  挤压态1.0%TiBw/TC18断口与侧断面SEM像
图8  三重退火态1.0%TiBw/TC18断口与侧断面SEM像
1 Zhang R, Wang D J, Huang L J, et al. Effects of heat treatment on microstructure and high temperature tensile properties of TiBw/TA15 composite billet with network architecture [J]. Mater. Sci. Eng., 2017, A679: 314
2 Wang S, An Q, Zhang R, et al. Microstructure characteristics and enhanced properties of network-structured TiB/(TA15-Si) composites via rolling deformation at different temperatures [J]. Mater. Sci. Eng., 2022, A829: 142176
3 Huang L J, Geng L. Progress on discontinuously reinforced titanium matrix composites [J]. J. Aeronaut. Mater., 2014, 34(04): 126
3 黄陆军, 耿 林. 非连续增强钛基复合材料研究进展 [J]. 航空材料学报, 2014, 34(04): 126
4 Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites [J]. Mater. Sci. Eng., 2000, R29: 49
5 Ma Z Y, Tjong S C, Gen L. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process [J]. Scr. Mater., 2000, 42: 367
doi: 10.1016/S1359-6462(99)00354-1
6 Patel V V, El-Desouky A, Garay J E, et al. Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites: Effect of reinforcement particle size [J]. Mater. Sci. Eng., 2009, A507: 161
7 Panda K B, Ravi Chandran K S. Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties [J]. Metall. Mater. Trans., 2003, 34A: 1371
8 Huang L J, Geng L, Li A B, et al. In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing [J]. Scr. Mater., 2009, 60: 996
doi: 10.1016/j.scriptamat.2009.02.032
9 Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials [J]. J. Mech. Phys. Solids, 1963, 11: 127
doi: 10.1016/0022-5096(63)90060-7
10 Wang S, Huang L J, Jiang S, et al. Multiplied bending ductility and toughness of titanium matrix composites by laminated structure manipulation [J]. Mater. Des., 2021, 197: 109237
doi: 10.1016/j.matdes.2020.109237
11 Wei S L, Huang L J, Li X T, et al. Correction to: Network-strengthened Ti-6Al-4V/(TiC + TiB) composites: Powder metallurgy processing and enhanced tensile properties at elevated temperatures [J]. Metall. Mater. Trans., 2020, 51A: 1437
12 Zhang R, Huang L J, An Q, et al. The hyperbolic constitutive equations and modified dynamic material model of TiBw/Ti-6.5Al-2.5Zr-1Mo-1V-0.5Si composites [J]. Mater. Sci. Eng., 2019, A766: 138329
13 Jiao Y, Huang L J, Wei S L, et al. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance [J]. J. Mater. Sci. Technol., 2019, 35: 1532
doi: 10.1016/j.jmst.2019.04.001
14 Roy S, Suwas S, Tamirisakandala S, et al. Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1B [J]. Acta Mater., 2011, 59: 5494
doi: 10.1016/j.actamat.2011.05.023
15 Sun S Y, Lu W J. Effects of trace reinforcements on microstructure and tensile properties of in-situ synthesized TC18 Ti matrix composite [J]. J. Compos. Mater., 2017, 51: 3623
doi: 10.1177/0021998317691343
16 Sen I, Ramamurty U. Elastic modulus of Ti-6Al-4V-xB alloys with B up to 0.55 wt.% [J]. Scr. Mater., 2010, 62: 37
doi: 10.1016/j.scriptamat.2009.09.022
17 Liu C M, Wang H M, Tian X J, et al. Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy [J]. Mater. Sci. Eng., 2013, A586: 323
18 Prithiv T S, Kloenne Z, Li D, et al. Grain boundary segregation and its implications regarding the formation of the grain boundary α phase in the metastable β-Titanium Ti-5Al-5Mo-5V-3Cr alloy [J]. Scr. Mater., 2022, 207: 114320
doi: 10.1016/j.scriptamat.2021.114320
19 Sun J F, Zhang Z W, Zhang M L, et al. Microstructure evolution and their effects on the mechanical properties of TB8 titanium alloy [J]. J. Alloys Compd., 2016, 663: 769
doi: 10.1016/j.jallcom.2015.12.152
20 Yao C F, Wu D X, Ma L F, et al. Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy [J]. Appl. Surf. Sci., 2016, 387: 1257
doi: 10.1016/j.apsusc.2016.06.162
21 Chen R, An Q, Wang S, et al. Overcoming the strength-ductility trade-off dilemma in TiBw/TC18 composites via network architecture with trace reinforcement [J]. Mater. Sci. Eng., 2022, A842: 143092
22 Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
22 郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53: 257
doi: 10.11900/0412.1961.2016.00529
23 Liu D K, Huang G S, Gong G L, et al. Influence of different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1306
doi: 10.1016/S1003-6326(17)60151-1
24 Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V Alloy [J]. Acta. Metall. Sin., 2021, 57: 1246
24 马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能 [J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
25 Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5A1-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
25 刘仁慈, 王 震, 刘 冬 等. Ti-45.5A1-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
26 Wang B, Huang L J, Hu H T, et al. Superior tensile strength and microstructure evolution of TiB whisker reinforced Ti60 composites with network architecture after β extrusion [J]. Mater. Charact., 2015, 103: 140
doi: 10.1016/j.matchar.2015.03.029
27 Wang B, Huang L J, Geng L, et al. Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites [J]. Mater. Des., 2015, 85: 679
doi: 10.1016/j.matdes.2015.07.058
28 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
29 Guo X L, Wang L Q, Wang M M, et al. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites [J]. Acta Mater., 2012, 60: 2656
doi: 10.1016/j.actamat.2012.01.032
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.