Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 135-142    DOI: 10.11900/0412.1961.2015.00216
  论文 本期目录 | 过刊浏览 |
微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*
杨蕊,潘艳,陈威,孙巧艳(),肖林,孙军
西安交通大学金属材料强度国家重点实验室, 西安 710049
DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION
Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN(),Lin XIAO,Jun SUN
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(5942 KB)   HTML
摘要: 

研究了尺寸为0.3~2.0 μm的Ti-10V-2Fe-3Al (Ti1023)微柱沿[011]位向压缩的变形行为及微观机制. 结果表明: Ti1023 微柱沿[011]位向压缩的塑性变形阶段应力-应变曲线光滑, 表现出持续加工硬化, 无应变突发现象. 微柱屈服强度(σ0.2)随试样尺寸(d)的减小而增加, 其关系为: σ0.2d -0.18. 微柱塑性变形以{112}<111>滑移主导, 应变量超过10%时产生应力诱发马氏体(α″), 应力诱发马氏体相变发生时的应力(σcm)亦随d的减小而增加, 其关系为: σcmd -0.28. 在均匀塑性变形阶段, 应变硬化指数(n)随尺寸的减小而增加. 采用TEM观察了变形前后微观组织形貌, 表明Ti1023微柱沿[011]位向压缩时表现出来的持续应变硬化归因于晶体中纳米尺度ω相和α″对位错滑移的阻碍作用.

关键词 Ti-10V-2Fe-3Al应力诱发马氏体尺寸效应应变硬化    
Abstract

Ti and its alloys have potential application in micro-electromechanical systems (MEMS) for its excellent mechanical properties. The strength of micro- and nano-scale Ti and its alloys has been proven significantly increased as the sample size decreased, which is known as the "size effect", when dislocation and twinning are dominant plastic deformation modes. Martensitic transformation is an important plastic deformation mode in the Ti alloys. However, there is a limited research on the martensitic transformation in small-scale. Therefore, the study on mechanical behavior and deformation mechanism of [011]-oriented Ti-10V-2Fe-3Al (Ti1023) single crystal micropillars in a size range of 0.3~2.0 μm were investigated under uniaxial compression. The results show that Ti1023 micropillars exhibit smooth stress-strain curves in the regime of plastic deformation without a conventional strain burst phenomenon in the submicron pillars. It means continuous plastic strain hardening. The relationship between the yield stress (σ0.2), the stress for stress-induced martensite phase (SIM) transformation (σcm) and the sample size can be expressed in the forms of σ0.2d -0.18 and σcmd -0.28 , respectively. Strain hardening exponent (n) in creases with decreasing micropillar size. SEM examination together with crystallography analysis show that {112}<111> slip predominates plastic deformation mode in the Ti1023 micropillars. Transmission electron microscopy (TEM) observation of microstructures in the deformed and undeformed micropillars indicate that both nanoscale athermal ω particles and SIM phase α″ impede dislocation movement, and prohibit the formation of tangled dislocations in a collective, avalanche-like way resulting in strain bursts.

Key wordsTi-10V-2Fe-3Al    stress induced martensite (SIM)    size effect    strain hardening
收稿日期: 2015-04-13     
基金资助:* 国家自然科学基金项目51271136, 51321003和51301127, 国家重点基础研究发展计划项目2014CB644003, 以及高等学校学科创新引智计划项目B06025资助

引用本文:

杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
Rui YANG, Yan PAN, Wei CHEN, Qiaoyan SUN, Lin XIAO, Jun SUN. DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION. Acta Metall Sin, 2016, 52(2): 135-142.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00216      或      https://www.ams.org.cn/CN/Y2016/V52/I2/135

图1  Ti1023试样的EBSD取向图
图2  微尺度Ti1023合金应力-应变曲线
图3  塑性变形阶段lgσt-lgεt曲线及应变硬化指数(n)随微柱尺寸(d)的变化
图4  屈服强度(σ0.2)和马氏体相变诱发应力(σcm)与d关系曲线
图5  微柱压缩前后的SEM像
图6  未变形2.0 μm微柱的TEM像
图7  经20%变形量压缩后1.0 μm微柱微观组织形貌
表1  bcc结构金属常见滑移系的滑移面法线与[011]方向的夹角(θ)
图8  bcc晶体滑移系{110}<111>, {112}<111>和{123}<111>, 以及[011]位向Ti1023合金微柱压缩时滑移示意图
[1] Kim J Y, Jang D C, Greer J R.Acta Mater, 2010; 58: 2355
[2] Schneider A S, Kaufmann D, Clark B G, Frick C P, Gruber P A, Mönig R, Kraft O, Arzt E.Phys Rev Lett, 2009; 103: 105501
[3] Kim J Y, Jang D C, Greer J R.Scr Mater, 2009; 61: 300
[4] Han S M, Bozorg-Grayeli T, Groves J R, Nix W D.Scr Mater, 2010; 63: 1153
[5] Kaufmann D, Mönig R, Volkert C A, Kraft O.Int J Plast, 2011; 27: 470
[6] Kaufmann D, Schneider A S, Mönig R, Volkert C A, Kraft O.Int J Plast, 2013; 49: 145
[7] Schneider A S, Clark B G, Frick C P, Gruber P A, Arzt E.Mater Sci Eng, 2009; A508: 241
[8] Huang L, Li Q J, Shan Z W, Li J, Sun J, Ma E.Nat Commu, 2011; 2: 547
[9] Greer J R, De Hosson J T M.Prog Mater Sci, 2011; 56: 654
[10] Brinckmann S, Kim J Y, Greer J R.Phys Rev Lett, 2008; 100: 155502
[11] Greer J R, Weinberger C R, Cai W.Mater Sci Eng, 2008; A493: 21
[12] Kim J Y, Jang D C, Greer J R.Int J Plast, 2012; 28: 46
[13] Frick C P, Clark B G, Arzt E.Acta Mater, 2007; 55: 3845
[14] Frick C P, Clark B G, Orso S, Petra S R.Scr Mater, 2008; 59: 7
[15] Norflleet D M, Sarosi P M, Manchiraju S, Wagner M F X, Uchic M D, Anderson P M, Mills M G.Acta Mater, 2009; 57: 3549
[16] San Juan J, Nó M L. J Alloys Compd, 2013; 577S: S25
[17] Liu L, Ding X, Li J, Lookman T, Sun J.Nanoscale, 2014; 6: 2067
[18] Withey E A, Minor A M, Chrzan D C, Morris Jr J W, Kuramoto S.Acta Mater, 2010; 58: 2652
[19] Li C.PhD Dissertation, Hunan University, Changsha, 2009
[19] (李聪. 湖南大学博士学位论文, 长沙, 2009)
[20] Duerig T W, Terlinde G T, Williams J C.Metall Trans, 1980; 11A: 1980
[21] Grujicic M, Zhang Y J.Mater Sci, 2000; 35: 4635
[22] Shu D L.Mechanical Properties of Engineering Materials. Beijing: China Machine Press, 2007: 15
[22] (束德林. 工程材料力学性能. 北京: 机械工业出版社, 2007: 15)
[23] Gu R, Ngan A H W.Scr Mater, 2013; 68: 861
[24] Jennings A T, Burek M J, Greer J R.Phys Rev Lett, 2010; 104: 135503
[25] Furuhara T, Annaka S, Tomio Y, Maki T. Mat Sci Eng, 2006; A438-440: 825
[26] Duerig T W, Albrecht J, Richter D, Fischer P.Acta Metall, 1982; 30: 2161
[27] Honeycombe R W K. The Plastic Deformation of Metal. 2nd Ed., London: Edward Arnold Ltd., 1984: 107
[28] Kim J Y, Jang D C, Greer J R.Int J Plast , 2012; 28: 46
[29] Magnin T, Driver J H.Mater Sci Eng, 1979; 39: 175
[30] Jennings A T, Gross C, Greer F, Aitken Z H, Lee S W, Weinberge C R, Greer J R.Acta Mater, 2012; 60: 3444
[31] Gu R, Ngan A H W.Acta Mater, 2012; 60: 6102
[32] Jang D C, Cai C, Greer J R.Nano Lett, 2011; 11: 1743
[33] Williams J C, Hickman B S, Marcus H L.Metall Trans, 1971; 2A: 1913
[34] Zhang J Y, Liu G, Sun J.Int J Plast, 2013; 50: 1
[1] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[2] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
[3] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[4] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[5] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[6] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[7] 郭鹏程, 钱立和, 孟江英, 张福成. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*[J]. 金属学报, 2014, 50(4): 415-422.
[8] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[9] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[10] 代启锋 宋仁伯 范午言 郭志飞 关小霞. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制[J]. 金属学报, 2012, 48(10): 1160-1165.
[11] 文玉华 张万虎 司海涛 熊仁龙 彭华备. 高Si奥氏体高Mn钢加工硬化行为及机制的研究[J]. 金属学报, 2012, 48(10): 1153-1159.
[12] 张志强 董利民 杨洋 关少轩 刘羽寅 杨锐. 淬火温度对TC16钛合金显微组织及变形行为的影响[J]. 金属学报, 2011, 47(10): 1257-1262.
[13] 张金钰 张欣 牛佳佳 刘刚 张国君 孙军. Cu/X(X=Cr, Nb)纳米多层膜力/电学性能的尺度依赖性[J]. 金属学报, 2011, 47(10): 1348-1354.
[14] 宋仁伯 张永坤 文新理 贾翼速. Nb-B复合高强度集装箱用钢的高温变形行为[J]. 金属学报, 2011, 47(1): 34-40.
[15] 莫德锋 何国球 胡正飞 刘晓山 张卫华. 铸造铝合金微观组织对应变硬化指数预测的影响[J]. 金属学报, 2010, 46(2): 184-188.