Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 137-140    DOI: 10.3724/SP.J.1037.2014.00016
  论文 本期目录 | 过刊浏览 |
金属强度的尺寸效应*
黄晓旭
(Danish-Chinese Center for Nanometals, Department of Wind Energy, Technical University of
Denmark, DK-4000 Roskilde, Denmark)
SIZE EFFECTS ON THE STRENGTH OF METALS
HUANG Xiaoxu
Danish-Chinese Center for Nanometals, Department of Wind Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark
全文: PDF(1370 KB)   HTML
摘要: 简要综述了金属强度的晶粒尺寸效应和样品尺寸效应的研究历史和现状, 揭示了它们的基本强化机制分别是增加位错运动的阻力和增加位错产生的难度. 在一些纳米金属中发现这2种机制同时起作用, 从而指出利用这2种机制调控纳米金属强塑性的可能性. 这种可能性在纳米纯Al中得到了验证.
关键词 金属强度晶粒尺寸效应样品尺寸效应纳米金属强化机制    
Abstract:The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistance to dislocation motion and to dislocation generation, respectively. It is shown that both strengthening mechanisms take place in some nanostructured metals, which leads to a suggestion to use these two mechanisms for optimizing the strength and ductility of nanostructured metals. This suggestion is verified by some results obtained in nanostructured pure aluminum.
Key wordsKEY WORDS strength of metal    grain size effect    specimen size effect    nanostructured metal    strengthening mechanism
    
ZTFLH:  TG111.2  
基金资助:*丹麦国家研究基金项目DNRF86-5和国家自然科学基金项目51261130091资助
Corresponding author: HUANG Xiaoxu, senior scientist, Tel:45-46775755, E-mail:xihu@dtu.dk   
作者简介: 黄晓旭, 男, 1963年生, 资深研究员

引用本文:

黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS. Acta Metall Sin, 2014, 50(2): 137-140.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2014.00016      或      https://www.ams.org.cn/CN/Y2014/V50/I2/137

[1] Hall E O. Proc Phys Soc, 1951; 64B: 747
[2] Petch N J. J Iron Steel Inst, 1953; 174: 25
[3] Armstrong R W, Codd I, Douthwaite R M, Petch N J. Philos Mag, 1962; 7: 45
[4] Takaki S. Mater Sci Forum, 2010; 654-656: 11
[5] Eshelby J D, Frank F C, Nabarro F R N. Philos Mag, 1951; 42: 351
[6] Li J C M. Trans TMS-AIME, 1963; 227: 239
[7] Conrad H, Jung K. Mater Sci Eng, 2005; A391: 272
[8] Dunstan D J, Bushby A J. Inter J Plast, 2014; 53: 56
[9] Schi?tz J, Jacobsen K W. Science, 2003; 301: 1357
[10] Kamikawa N, Huang X, Tsuji N, Hansen N. Acta Mater, 2009; 57: 4198
[11] Hansen N. Acta Metall, 1977; 25: 863
[12] Brenner S S. J Appl Phys, 1956; 27: 1484
[13] Brenner S S. J Appl Phys, 1957; 28: 1023
[14] Uchic M D, Shade P A, Dimiduk D M. Annu Rev Mater Res, 2009; 39: 361
[15] Sudharshan Phani P, Johanns K E, George E P, Pharr G M. Acta Mater, 2013; 61: 2489
[16] Johanns K E, Sedlmayr A, Sudharshan Phani P, M?nig R, Kraft O, George E P, Pharr G M. J Mater Res, 2012; 27: 508
[17] Dehm G. Prog Mater Sci, 2009; 54: 664
[18] Shan Z W, Mishra R K, Asif S A S, Warren O L, Minor A M. Nat Mater, 2008; 7: 115
[19] Sudharshan Phani P, Johanns K E, Duscher G, Gali A, George E P, Pharr G M. Acta Mater, 2011; 59: 2172
[20] Dunstan D J, Bushby A J. Int J Plast, 2013; 40: 152
[21] Huang X, Tsuji N, Hansn N. Science, 2006; 312: 249
[22] Huang X, Kamikawa N, Hansen N. Mater Sci Eng, 2008; A483-484 : 102
[23] Huang X, Kamikawa N, Hansen N. J Mater Sci, 2008; 43: 7397
[1] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[2] 吴俊升, 张博威, 李晓刚, 黄一中. 纳米金属腐蚀[J]. 金属学报, 2018, 54(8): 1087-1093.
[3] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[4] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[5] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[6] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.
[7] 韩忠, 姚斌, 卢柯. 纳米结构Cu中动态再结晶主导的磨损机制*[J]. 金属学报, 2014, 50(2): 238-244.
[8] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[9] 李海, 王芝秀, 苗芬芬, 方必军, 宋仁国, 郑子樵. 预时效+冷轧变形+再时效对6061铝合金微观组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
[10] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
[11] 徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6.
[12] 张林; 张连生 . 纳米Fe-ZnSe颗粒膜的结构与磁性[J]. 金属学报, 2008, 44(3): 277-280 .
[13] 王瑞珍; 章洪涛 . 薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制[J]. 金属学报, 2007, 43(10): 1082-1090 .
[14] 张林; 刘宜华; 张连生; 张汝贞; 黄宝歆 . 纳米Fe-In2O3颗粒膜的结构与磁特性[J]. 金属学报, 2003, 39(1): 109-112 .
[15] 杜昊; 肖金泉 . 利用有效媒质理论对纳米金属薄膜介电函数的初步分析[J]. 金属学报, 2000, 36(11): 1165-1168 .