Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 357-366    DOI: 10.11900/0412.1961.2017.00371
  本期目录 | 过刊浏览 |
微纳米尺度金属导电材料热疲劳研究进展
张广平1(), 陈红蕾1,2, 罗雪梅1, 张滨3
1中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
2中国科学技术大学材料科学与工程学院 沈阳 110016
3 东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室 沈阳 110819
Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors
Guangping ZHANG1(), Honglei CHEN1,2, Xuemei LUO1, Bin ZHANG3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(3600 KB)   HTML
摘要: 

世界已逐渐进入以物联网和智能制造为主导的工业4.0时代,特别是人工智能和大数据处理的强烈需求,微纳米尺度器件的研发制造及广泛使用的日趋活跃使得小尺度材料得到广泛关注。由于这些材料的几何尺度和微观结构尺度的约束效应,其热疲劳损伤行为与块体材料不同。同时,材料尺度由微米向纳米量级的转变也会引起损伤机制的转变,使材料表现出不同的损伤形式,产生显著的尺寸效应。本文综述了近年来国内外开展的有关金属薄膜/线的热疲劳实验方法、热疲劳损伤行为及演化和热疲劳影响因素的研究进展,探讨了微纳米尺度金属材料热疲劳的微观机制和尺寸效应,并对这一领域的研究前景进行展望。

关键词 金属薄膜互连线交流电热疲劳尺寸效应    
Abstract

The world has gradually entered the industrial 4.0 Era, which is dominated by the Internet of Things (IOT) and intelligent manufacturing. Especially, strong requirement for artificial intelligence and big data processing, the development and preparation of micro/nano electronic devices is becoming increasingly active, and much more concerns have been attracted to small-scale materials. Because of the constraint effect of geometric and microstructural dimensions of these materials, the thermal fatigue damage behavior is different from that of the bulk counterparts. At the same time, the change of the material scale from microns to nanometers also results in the transformation of the deformation mechanism, so that the materials exhibit different damage behaviors and significant size effects. In this paper, thermal fatigue testing methods, thermal fatigue damage and evolution, and the factors influencing thermal fatigue properties of metal film/line are reviewed, the corresponding mechanism of thermal fatigue and the size effect of the micro/nano-scale metals are discussed. The prospective research of this field in the future is addressed.

Key wordsthin metal film    interconnect    alternating current    thermal fatigue    size effect
收稿日期: 2017-09-05     
基金资助:资助项目 国家自然科学基金项目Nos.51371047、51671050和51601198
作者简介:

作者简介 张广平,男,1966年生,研究员,博士

引用本文:

张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.
Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors. Acta Metall Sin, 2018, 54(3): 357-366.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00371      或      https://www.ams.org.cn/CN/Y2018/V54/I3/357

图1  交流电诱发金属互连线热疲劳损伤实验系统示意图
Film Substrate t / nm W / μm D / μm j / (MAcm-2) f / Hz Ref.
Cu/Ta Surface 100 8~15 0.5±0.2 14~24 200 [33]
oxidized Si 300 8~15 1.5±0.5 14~24 200
200 8~15 1.0±0.5 14~24 200, 20000 [43]
300 0.5±0.2 14~24 200
Cu/Ta/SiNx Surface 200 8 1.5±0.5 10~40 200, 20000 [35]
oxidized Si 300 8 0.5±0.2 10~40 200, 20000
Cu/Ta/SiNx with/without Surface 200 8 1.3±0.5 10~40 20000 [34]
photoresist encapsulation oxidized Si
Al-1%Si (atomic fraction) Surface 550 3.3 - 10, 11 200 [17]
with/without photoresist oxidized Si
encapsulation
Al-1%Si (atomic fraction) Surface 550 3.3 0.3~0.6 12.2±0.3 200 [17]
with SiNx encapsulation oxidized Si
Cu Surface 60 5, 10, 15 0.055±0.02 3.2~26.5 50 [37]
oxidized Si
Au SiO2 200 2 0.074±0.011 3.5~11.5 50 [45]
Au Surface 35 0.1~5 0.032±0.012 3.5~35.2 100 [38]
oxidized Si
表1  交流电热疲劳研究的材料体系以及实验参数[17,33~35,37,38,43,45]
图2  不同条件下交流电诱发金属线热疲劳应变幅-寿命关系[33~35,37,42,43,45~47]
图3  典型的<100>取向晶粒和<111>取向晶粒的损伤形貌及演化[34]
图4  热疲劳之后的(111)面外取向晶粒的透射电镜像[50]
图5  微小尺度金属薄膜机械疲劳与热疲劳损伤失效机制和尺度的关系图
[1] Ceric H, Selberherr S.Electromigration in submicron interconnect features of integrated circuits[J]. Mater. Sci. Eng., 2011, R71: 53
[2] Burghartz J N.Guide to State-of-the-Art Electron Devices[M]. Stuttgart, Germany: John Wiley & Sons, Ltd, 2013: 72
[3] Schaller R R.Moore's law: Past, present, and future[J]. IEEE Spectrum, 1997, 34: 52
[4] Murarka S P. Advanced materials for future interconnections of the future need and strategy: Invited lecture [J]. Microelectron. Eng., 1997, 37-38: 29
[5] Song D Y, Zong X P, Sun R X, et al.Copper interconnections for IC and studies on related problems[J]. Semicond. Technol., 2001, 26(2): 29(宋登元, 宗晓萍, 孙荣霞等. 集成电路铜互连线及相关问题的研究 [J]. 半导体技术, 2001, 26(2): 29)
[6] Lu Q J, Zhu Z M, Yang Y T, et al.Analysis of propagation delay and repeater insertion in single-walled carbon nanotube bundle interconnects[J]. Microelectron. J., 2016, 54: 85
[7] Aceros J C, McGruer N E, Adams G G. Microelectromechanical system microhotplates for reliability testing of thin films and nanowires[J]. J. Vac. Sci. Technol., 2008, 26B: 918
[8] Chen D L, Chen T C, Yang P F, et al.Thermal resistance of side by side multi-chip package: Thermal mode analysis[J]. Microelectron. Reliab., 2015, 55: 822
[9] MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality [J]. Science, 2016, 353: aaf2093
[10] Hwang S W, Tao H, Kim D H, et al.A physically transient form of silicon electronics[J]. Science, 2012, 337: 1640
[11] Sch?fer D, Mardare C C, Savan A, et al.High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction[J]. Anal. Chem., 2011, 83: 1916
[12] Li X T, Tong H Y, Zhao Y, et al.Structures, mechanical properties and applications of flexible electronic components[J]. Mech. Eng., 2015, 37: 295(李学通, 仝洪月, 赵越等. 柔性电子器件的应用、结构、力学及展望 [J]. 力学与实践, 2015, 37: 295)
[13] Kim D H, Viventi J, Amsden J J, et al.Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nat. Mater., 2010, 9: 511
[14] Kim D H, Lu N S, Ghaffari R, et al.Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy[J]. Nat. Mater., 2011, 10: 316
[15] Ko H C, Stoykovich M P, Song J Z, et al.A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454: 748
[16] Lee J, Wu J, Shi M X, et al.Stretchable GaAs photovoltaics with designs that enable high areal coverage[J]. Adv. Mater., 2011, 23: 986
[17] Keller R R, M?nig R, Volkert C A, et al.Interconnect failure due to cyclic loading[J]. AIP Conf. Proc., 2002, 612: 119
[18] Keller R R, Geiss R H, Cheng Y W, et al.Microstructure evolution during electric current induced thermomechanical fatigue of interconnects [A]. Materials Research Society Symposium Proceedings: Materials, Technology, and Reliability of Advanced Interconnects[C]. San Francisco, CA: Material Research Society, 2005, 863: 295
[19] Philofsky E, Ravi K, Hall E, et al.Surface reconstruction of aluminum metallization-a new potential wearout mechanism [A]. Proceedings of the 9th Annual Reliability Physics Symposium[C]. Las Vegas, U.S.A: IEEE, 1971: 120
[20] Romig A D Jr, Dugger M T, McWhorter P J. Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability[J]. Acta Mater., 2003, 51: 5837
[21] Iacopi F, Brongersma S H, Vandevelde B, et al.Challenges for structural stability of ultra-low-k-based interconnects[J]. Microelectron. Eng., 2004, 75: 54
[22] Zhang G P, Schwaiger R, Volkert C A, et al.Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films[J]. Philos. Mag. Lett., 2003, 83: 477
[23] Zhang G P, Volkert C A, Schwaiger R, et al.Length-scale-controlled fatigue mechanisms in thin copper films[J]. Acta Mater., 2006, 54: 3127
[24] Zhang G P, Volkert C A, Schwaiger R, et al.Damage behavior of 200-nm thin copper films under cyclic loading[J]. J. Mater. Res., 2005, 20: 201
[25] Zhang G P, Wang Z G.Progress in fatigue of small dimensional materials[J]. Acta Metall. Sin., 2005, 41: 1(张广平, 王中光. 小尺度材料的疲劳研究进展 [J]. 金属学报, 2005, 41: 1)
[26] M?nig R, Keller R R, Volkert C A.Thermal fatigue testing of thin metal films[J]. Rev. Sci. Instrum., 2004, 75: 4997
[27] Barbosa N, Keller R R, Read D T, et al.Comparison of electrical and microtensile evaluations of mechanical properties of an aluminum film[J]. Metall. Mater. Trans., 2007, 38A: 2160
[28] Heinz W, Pippan R, Dehm G.Investigation of the fatigue behavior of Al thin films with different microstructure[J]. Mater. Sci. Eng., 2010, A527: 7757
[29] Heinz W, Dehm G.Grain resolved orientation changes and texture evolution in a thermally strained Al film on Si substrate[J]. Surf. Coat. Technol., 2011, 206: 1850
[30] Bigl S, Wurster S, Cordill M J, et al.Advanced characterisation of thermo-mechanical fatigue mechanisms of different copper film systems for wafer metallizations[J]. Thin Solid Films, 2016, 612: 153
[31] Eve S, Huber N, Kraft O, et al.Development and validation of an experimental setup for the biaxial fatigue testing of metal thin films[J]. Rev. Sci. Instrum., 2006, 77: 103902
[32] Tan C M, Roy A.Electromigration in ULSI interconnects[J]. Mater. Sci. Eng., 2007, A58: 1
[33] M?nig R.Thermal fatigue of Cu thin films [D]. Stuttgart: Universit?t Stuttgart, 2005
[34] Park Y B, M?nig R, Volkert C A.Thermal fatigue as a possible failure mechanism in copper interconnects[J]. Thin Solid Films, 2006, 504: 321
[35] Park Y B, M?nig R, Volkert C A.Frequency effect on thermal fatigue damage in Cu interconnects[J]. Thin Solid Films, 2007, 515: 3253
[36] Barbosa III N, Slifka A J.Spatially and temporally resolved thermal imaging of cyclically heated interconnects by use of scanning thermal microscopy[J]. Microsc. Res. Tech., 2008, 71: 579
[37] Zhang J, Zhang J Y, Liu G, et al.Unusual thermal fatigue behaviors in 60 nm thick Cu interconnects[J]. Scr. Mater., 2009, 60: 228
[38] Sun L J, Ling X, Li X D.Alternating-current induced thermal fatigue of gold interconnects with nanometer-scale thickness and width[J]. Rev. Sci. Instrum., 2011, 82: 103903
[39] Wang M, Zhang B, Liu C S, et al.Study on thermal fatigue failure of thin gold film with alternating current loading[J]. Acta Metall. Sin., 2011, 47: 601(王鸣, 张滨, 刘常升等. 交流电作用下Au薄膜热疲劳失效行为的研究 [J]. 金属学报, 2011, 47: 601)
[40] Wang M, Zhang B, Zhang G P, et al.Scaling of reliability of gold interconnect lines subjected to alternating current[J]. Appl. Phys. Lett., 2011, 99: 011910
[41] Luo X M, Zhang B, Zhang G P.Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current[J]. J. Appl. Phys., 2014, 116: 103509
[42] Keller R R, Strus M C, Chiaramonti A N, et al.Reliability testing of advanced interconnect materials[J]. AIP Conf. Proc., 2011, 1395: 259
[43] M?nig R, Park Y B, Volkert C A.Thermal fatigue in copper interconnects[J]. AIP Conf. Proc., 2006, 817: 147
[44] Wang M.Thermal fatigue behavior of Au interconnect lines induced by alternating current and its size effect [D]. Shenyang: Northeastern University, 2011(王鸣. 交流电诱发Au互连线热疲劳行为及其尺寸效应 [D]. 沈阳: 东北大学, 2011)
[45] Wang M, Zhang B, Zhang G P, et al.Evaluation of thermal fatigue damage of 200-nm-thick Au interconnect lines[J]. Scr. Mater., 2009, 60: 803
[46] Luká? P, Kunz L.Effect of grain size on the high cycle fatigue behaviour of polycrystalline copper[J]. Mater. Sci. Eng., 1987, 85: 67
[47] Wang D, Volkert C A, Kraft O.Effect of length scale on fatigue life and damage formation in thin Cu films[J]. Mater. Sci. Eng., 2008, A493: 267
[48] Keller R R, Geiss R H, Cheng Y W, et al.Electric current induced thermomechanical fatigue testing of interconnects[J]. AIP Conf. Proc., 2005, 788: 491
[49] Geiss R H, Read D T.Defect behavior in aluminum interconnect lines deformed thermomechanically by cyclic joule heating[J]. Acta Mater., 2008, 56: 274
[50] Zhang G P, M?nig R, Park Y B, et al.Thermal fatigue failure analysis of copper interconnects under alternating currents [A]. Proceedings of the 2005 6th International Conference on Electronic Packaging Technology[C]. Shenzhen, China: IEEE, 2005: 1
[51] Balk T J, Dehm G, Arzt E.Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films[J]. Acta Mater., 2003, 51: 4471
[52] Chen E Y, Starke E A Jr. The effect of ion plating on the low cycle fatigue behavior of copper single crystals[J]. Mater. Sci. Eng., 1976, 24: 209
[1] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[2] 王莉,何禹锋,申健,郑伟,楼琅洪,张健. 第二取向对第三代单晶高温合金热疲劳过程中冷却孔孔周氧化行为的影响研究[J]. 金属学报, 2019, 55(11): 1417-1426.
[3] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[4] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[5] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[6] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[7] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[8] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[9] 濮晟, 王莉, 谢光, 丁贤飞, 楼琅洪, 冯强. 缺口取向和再结晶对一种定向凝固钴基高温合金热疲劳性能的影响[J]. 金属学报, 2015, 51(4): 449-457.
[10] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[11] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[12] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[13] 程健, 谢飞, 孙力, 朱丽曼, 潘建伟. 交流电场增强45钢中低温粉末法渗硼特性[J]. 金属学报, 2014, 50(11): 1311-1318.
[14] 刘光磊,司乃潮,孙少纯,张志坚,吴勤方. 多元Al-7.5Si-4Cu合金热疲劳裂纹萌生与扩展行为的研究[J]. 金属学报, 2013, 49(3): 303-310.
[15] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.