Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 760-768    DOI: 10.11900/0412.1961.2019.00282
  本期目录 | 过刊浏览 |
金刚石工具用Cu-10Sn-xNi合金的制备和性能表征
刘震鹏1,2, 闫志巧2, 陈峰2(), 王顺成2, 龙莹3, 吴益雄4
1.中南大学材料科学与工程学院 长沙 410083
2.广东省材料与加工研究所 广州 510650
3.广东工业大学机电工程学院 广州 510006
4.广州晶体科技有限公司 广州 510520
Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools
LIU Zhenpeng1,2, YAN Zhiqiao2, CHEN Feng2(), WANG Shuncheng2, LONG Ying3, WU Yixiong4
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Guangdong Institute of Materials and Processing, Guangzhou 510650, China
3.School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
4.Guangzhou Crystal Technology Co. , Ltd, Guangzhou 510520, China
引用本文:

刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
Zhenpeng LIU, Zhiqiao YAN, Feng CHEN, Shuncheng WANG, Ying LONG, Yixiong WU. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. Acta Metall Sin, 2020, 56(5): 760-768.

全文: PDF(5476 KB)   HTML
摘要: 

采用球磨法制备了4种不同Ni含量的Cu-10Sn-xNi (x=15、30、45和60,质量分数,%)预合金粉末,分别经820、850和880 ℃热压烧结制备成合金块材,对预合金粉末和合金块材的微观组织和机械性能进行表征与检测。结果表明:球磨法制备的预合金粉末中出现了Cu3.8Ni相,当Ni含量增加到60%时,还出现了Ni3Sn相和非晶相。随Ni含量的增加和烧结温度的升高,烧结合金中Sn元素的偏析现象得到有效抑制,组织均匀性显著提高,同时合金的密度、抗弯强度和弯曲弹性模量均相应提升。但增加Ni含量对合金的硬度影响不大。880 ℃热压烧结制备的Cu-10Sn-60Ni合金具有最佳的综合性能,其硬度、抗弯强度和弯曲弹性模量分别100 HRB、1308 MPa和75.6 GPa。

关键词 金刚石工具Cu-Sn-Ni合金微观组织抗弯强度弯曲弹性模量    
Abstract

Diamond tools are widely used in industry. Co is considered as the best matrix for the diamond tools due to its excellent retention of diamond grits and flexible control of wear resistance. But its application is suppressed because of its high price. The rapidly increasing contribution of matrices to tool production costs continues to encourage researchers to find and implement cheaper alternatives. Cu-based alloys are ideal materials to replace Co used as diamond tool matrices because of their low sintering temperature, good formability and low price. However, Cu-based matrices can not effectively hold the diamonds due to their low mechanical strength and small elastic modulus, so the service life and processing efficiency of Cu-based diamond tools are difficult to be satisfied. In this work, four kinds of Cu-10Sn-xNi pre-alloyed powders with different Ni contents (x=15, 30, 45 and 60, mass fraction, %) were prepared by ball milling. Bulk samples were fabricated from the pre-alloyed powders by hot pressing sintering at 820, 850 and 880 ℃, respectively. The microstructures and mechanical properties of pre-alloyed powders and bulks were characterized and tested. The results show that Cu3.8Ni phase is detected in the pre-alloyed powders prepared by ball milling. For the powder with 60%Ni, Ni3Sn phase and amorphous phase are detected. With increasing the Ni content as well as the sintering temperature, the segregation of Sn element in sintered alloys is effectively suppressed and the microstructure becomes homogeneous significantly, and the density, flexural strength and flexural modulus of the alloys are correspondingly improved. However, increasing the Ni content has little effect on the hardness of the alloys. The Cu-10Sn-60Ni alloy prepared by hot pressing at 880 ℃ has the best comprehensive performance. Its hardness, flexural strength and flexural modulus are 100 HRB, 1308 MPa and 75.6 GPa, respectively.

Key wordsdiamond tool    Cu-Sn-Ni alloy    microstructure    flexural strength    flexural modulus
收稿日期: 2019-08-26     
ZTFLH:  TG74  
基金资助:广东省公益研究与能力建设项目(2017A070701029);广州市对外科技合作项目(201907010022);广州市科技项目(201906040007)
作者简介: 刘震鹏,男,1993年生,硕士生
xCu alloySnNi
15751015
30601030
45451045
60301060
表1  Cu-10Sn-xNi混合粉末成分 (mass fraction / %)
图1  Cu-10Sn-xNi预合金粉末的SEM像
图2  Cu-10Sn-xNi预合金粉末中的元素分布图
图3  Cu-10Sn-xNi预合金粉末的XRD谱
图4  热压烧结Cu-10Sn-xNi合金的BSE像

Point

Mass fraction / %

Comment

CuNiSn
128.9529.6941.36Sn-rich area
231.6954.4913.82Transition area
31.4098.390.20Ni-rich area
496.761.112.12Cu-rich area
表2  图4a1中各点的EDS结果
图5  880 ℃热压烧结Cu-10Sn-60Ni合金中的第二相
图6  Ni含量和烧结温度对Cu-10Sn-xNi合金密度和硬度的影响
图7  Ni含量和烧结温度对Cu-10Sn-xNi合金抗弯强度和弯曲弹性模量的影响
图8  880 ℃热压烧结Cu-10Sn-xNi合金的弯曲断口形貌
1 Henriques B, Ferreira P, Buciumeanu M, et al. Copper-nickel-based diamond cutting tools: Stone cutting evaluation [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 1339
2 Song Y Q, Liu Y B, Zhang S H, et al. Manual for Synthetic Diamond Tools [M]. Beijing: Metallurgical Industry Press, 2014: 589
2 宋月清, 刘一波, 张绍和等. 人造金刚石工具手册 [M]. 北京: 冶金工业出版社, 2014: 589
3 Song Y Q, Yin S, Sun Y C, et al. Investigation on Co-base matrix of diamond tool [J]. Mater. Mech. Eng., 1993, 17(3): 39
3 宋月清, 殷 声, 孙毓超等. 钴基金刚石工具胎体材料的研究 [J]. 机械工程材料, 1993, 17(3): 39
4 de Oliveira H C P, Cabral S C, Guimarães R S, et al. Processing and characterization of a cobalt based alloy for use in diamond cutting tools [J]. Materwiss. Werksttech., 2009, 40: 907
5 Shen S, Song Y Q, Wang L M, et al. Application of pre-alloyed powders for diamond tools [J]. Powder Metall. Ind., 2006, 16(6): 37
5 申 思, 宋月清, 汪礼敏等. 预合金粉末在金刚石工具中的应用 [J]. 粉末冶金工业, 2006, 16(6): 37
6 Luo X Y, Ma H Q, Huang M, et al. Research and application of cobalt-substitute prealloy powder for diamond tools [J]. Diam. Abras. Eng., 2006, (1): 18
6 罗锡裕, 麻洪秋, 黄 漫等. 金刚石工具预合金代钴粉末的研究及应用 [J]. 金刚石与磨料磨具工程, 2006, (1): 18
7 Konstanty J. Powder metallurgy diamond tools—A review of manufacturing routes [J]. Mater. Sci. Forum, 2007, 534-536: 1121
8 Wang C, Zhang X F, Wang C F, et al. Current research situation and development of Cu-based diamond tools made by powder metallurgy [J]. Powder Metall. Technol., 2012, 30: 140
8 王 闯, 张效芬, 王长福等. 粉末冶金Cu基金刚石工具的研究现状及进展 [J]. 粉末冶金技术, 2012, 30: 140
9 Polini W, Turchetta S. Evaluation of diamond tool wear [J]. Int. J. Adv. Manuf. Technol., 2005, 26: 959
10 Artem'ev V P, Sokolov E G, Kozachenko A D. Study of the interaction between composite solders and diamond [J]. Met. Sci. Heat Treat., 2013, 55: 313
11 Li W S, Jiang W, Feng L, et al. Effect of Sn content on microstructure and hardness of Cu based diamond sawing matrixes [J]. Mater. Sci. Eng. Powder Metall., 2016, 21: 457
11 李文生, 姜 威, 冯 力等. Sn含量对Cu基金刚石锯片胎体组织与硬度的影响 [J]. 粉末冶金材料科学与工程, 2016, 21: 457
12 Liu D X, Stephenson T F, Korotkin M, et al. Properties of diamond tool binders with fine carbonyl Ni powder additions [J]. Diam. Abras. Eng., 2008, (S1): 148
13 Sun Y C, Liu Y B, Wang Q S. Diamond Tools and Metallography [M]. Beijing: China Building Materials Industry Press, 1999: 102
13 孙毓超, 刘一波, 王秦生. 金刚石工具与金属学基础 [M]. 北京: 中国建材工业出版社, 1999: 102
14 Wu Y, Yang S L. Research and development prospect of high-elastic Cu-Ni-Sn alloy [J]. Shanghai Nonferrous Met., 2014, 35: 38
14 吴 语, 杨胜利. 高弹性合金Cu-Ni-Sn的研究与发展 [J]. 上海有色金属, 2014, 35: 38
15 Wang J, Yin J L, Yan B. Development and applications of Cu-Ni-Sn alloy [J]. Shanghai Nonferrous Met., 2004, 25: 184
15 王 军, 殷俊林, 严 彪. Cu-Ni-Sn合金的发展和应用 [J]. 上海有色金属, 2004, 25: 184
16 Zhang G M, Chen C, Wang X J, et al. Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu-15Ni-8Sn powder [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 4223
17 Cong S H, Han F, Wang X C. Heat treatment processes, microstructure and properties of super high strength Cu-Ni-Sn alloy [J]. Heat Treat. Met., 2010, 35(6): 43
17 从善海, 韩 芳, 汪旭超. 超高强Cu-Ni-Sn合金的热处理工艺与组织性能 [J]. 金属热处理, 2010, 35(6): 43
18 Han F. Research on process and performance of high intensity Cu-Ni-Sn alloy prepared by powder metallurgy [D]. Wuhan: Wuhan University of Science and Technology, 2012
18 韩 芳. 粉末冶金法制备高强度Cu-Ni-Sn合金的工艺及性能研究 [D]. 武汉: 武汉科技大学, 2012
19 Zuo K S, Xi S Q, Zhou J E, et al. Mechanical alloying of copper-zinc powders at cryogenic conditions [J]. Chin. J. Nonferrous Met., 2005, 15: 1577
19 左可胜, 席生岐, 周敬恩等. 铜锌粉末低温机械合金化 [J]. 中国有色金属学报, 2005, 15: 1577
20 Qi B S, Wang C G, Yao X, et al. Characteristics of Cr and Al powders by high energy ball milling [J]. Chin. J. Rare Met., 2000, 24: 325
20 齐宝森, 王成国, 姚 新等. 高能球磨金属铬、铝粉末的特征 [J]. 稀有金属, 2000, 24: 325
21 Zhuge L J, Li Y D, Jin Z M, et al. Mechanical alloying of Ni-Ti-Cu powders [J]. Mater. Sci. Technol., 1997, 5(2): 6
21 诸葛兰剑, 李亚东, 金宗明等. Ni-Ti-Cu粉末的机械合金化 [J]. 材料科学与工艺, 1997, 5(2): 6
22 Wang Y H, Wang M P, Hong B, et al. The study of cast structure and component segregation in Cu-15Ni-8Sn-0.4Si alloy [J]. Min. Metall. Eng., 2002, 22(3): 104
22 王艳辉, 汪明朴, 洪 斌等. Cu-15Ni-8Sn-0.4Si合金铸态组织结构及成分偏析研究 [J]. 矿冶工程, 2002, 22(3): 104
23 Xiong J, Wang L M, Pang P S, et al. Study on sintering behaviors and performance of 10% tin bronze powders [J]. Powder Metall. Ind., 2008, 18(3): 18
23 熊 洁, 汪礼敏, 庞鹏沙等. CuSn10青铜粉末热压烧结行为及性能的研究 [J]. 粉末冶金工业, 2008, 18(3): 18
24 Shi J G, Liu P, Jin X, et al. Selective laser melting experiment of Cu10Sn alloy [J]. Ind. Technol. Innov., 2018, 5(4): 7
24 史金光, 刘 平, 金 霞等. 选择性激光熔化Cu10Sn合金成型试验 [J]. 工业技术创新, 2018, 5(4): 7
25 Zhou Y J. Research on high-performance wear-resistant tin bronze alloy and its advanced processing technology [D]. Luoyang: Henan University of Science and Technology, 2012
25 周延军. 高性能耐磨锡青铜合金及其先进制备加工技术研究 [D]. 洛阳: 河南科技大学, 2012
26 Xie D L, Wan L, Song D D, et al. Effect of composition of FeCoCu pre-alloyed powders on sintering characters used for diamond tools [J]. Chin. J. Nonferrous Met., 2016, 26: 577
26 谢德龙, 万 隆, 宋冬冬等. 金刚石工具用FeCoCu预合金粉组成对烧结特性的影响 [J]. 中国有色金属学报, 2016, 26: 577
27 Dong S S, Liu X X, Li C Q, et al. Analysis on domestic situation and development trend of pre-alloyed metal powder for diamond tools in China [J]. Superhard Mater. Eng., 2012, 24(1): 43
27 董书山, 刘晓旭, 李长青等. 超硬材料工具用金属预合金粉末的国内发展现状及趋势 [J]. 超硬材料工程, 2012, 24(1): 43
28 Huang M, Chen Z, Wang F R, et al. Study on mechanical retention of matrix to impregnated diamond [J]. Diam. Abras. Eng., 2004, (4): 43
28 黄 漫, 陈 哲, 王凤荣等. 孕镶金刚石工具中金刚石与胎体间机械包镶力的研究 [J]. 金刚石与磨料磨具工程, 2004, (4): 43
29 Shen X, Yao J B, Ma H Q, et al. Study on properties of water atomized Cu-Sn alloy powder [J]. Diam. Abras. Eng., 2015, 35(3): 52
29 沈 翔, 姚炯斌, 麻洪秋等. Cu-Sn系水雾化合金粉性能研究 [J]. 金刚石与磨料磨具工程, 2015, 35(3): 52
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.