|
|
冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响 |
王希1,2,刘仁慈1( ),曹如心3,贾清1,崔玉友1,杨锐1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学技术大学材料科学与工程学院 沈阳 110016 3. 三峡大学机械与动力学院 宜昌 443002 |
|
Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys |
WANG Xi1,2,LIU Renci1( ),CAO Ruxin3,JIA Qing1,CUI Yuyou1,YANG Rui1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. College of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3. College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China |
引用本文:
王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
Xi WANG,
Renci LIU,
Ruxin CAO,
Qing JIA,
Yuyou CUI,
Rui YANG.
Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. Acta Metall Sin, 2020, 56(2): 203-211.
[1] | Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129 | [1] | (杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129) | [2] | Kim Y W, Dimiduk D M. Progress in the understanding of gamma titanium aluminides [J]. JOM, 1991, 43(8): 40 | [3] | Kim Y W. Ordered intermetallic alloys, part III: Gamma titanium aluminides [J]. JOM, 1994, 46(7): 30 | [4] | Hu D W. Role of boron in TiAl alloy development: A review [J]. Rare Met., 2016, 35: 1 | [5] | Larsen D E, Kampe S, Christodoulou L. Effect of XD? TiB2 volume fraction on the microstructure of a cast near-gamma titanium aluminide alloy [J]. MRS Proc., 1990, 194: 285 | [6] | Cheng T T. The mechanism of grain refinement in TiAl alloys by boron addition—An alternative hypothesis [J]. Intermetallics, 2000, 8: 29 | [7] | Inkson B J, Boothroyd C B, Humphreys C J. Boride morphology in a (Fe, V, B)Ti-alloy containing B2-phase [J]. Acta Metall. Mater., 1995, 43: 1429 | [8] | Godfrey A B. Grain refinement of a gamma-based titanium aluminide using microalloy additions [D]. Birmingham: The University of Birmingham, 1996 | [9] | Hecht U, Witusiewicz V, Drevermann A, et al. Grain refinement by low boron additions in niobium-rich TiAl-based alloys [J]. Intermetallics, 2008, 16: 969 | [10] | De Graef M, L?fvander J P A, McCullough C, et al. The evolution of metastable Bf borides in a Ti-Al-B alloy [J]. Acta Metall. Mater., 1992, 40: 3395 | [11] | Hu D. Effect of composition on grain refinement in TiAl-based alloys [J]. Intermetallics, 2001, 9: 1037 | [12] | Kitkamthorn U, Zhang L C, Aindow M. The structure of ribbon borides in a Ti-44Al-4Nb-4Zr-1B alloy [J]. Intermetallics, 2006, 14: 759 | [13] | Hyman M E, McCullough C, Levi C G, et al. Evolution of boride morphologies in TiAl-B alloys [J]. Metall. Mater. Trans., 1991, 22A: 1647 | [14] | Yang L L, Zheng L J, Xiao Z X, et al. Effect of withdrawal rate on the microstructure of directional solidified Ti-47Al-2Cr-2Nb-0.8B alloys [J]. Acta Metall. Sin., 2010, 46: 879 | [14] | (杨莉莉, 郑立静, 肖志霞等. 抽拉速率对定向凝固Ti-47Al-2Cr-2Nb-0.8B合金组织的影响 [J]. 金属学报, 2010, 46: 879) | [15] | Imayev R M, Imayev V M, Oehring M, et al. Alloy design concepts for refined gamma titanium aluminide based alloys [J]. Intermetallics, 2007, 15: 451 | [16] | Hu D, Mei J F, Wickins M, et al. Microstructure and tensile properties of investment cast Ti-46Al-8Nb-1B alloy [J]. Scr. Mater., 2002, 47: 273 | [17] | Hu D. Effect of boron addition on tensile ductility in lamellar TiAl alloys [J]. Intermetallics, 2002, 10: 851 | [18] | Lin B C, Liu R C, Jia Q, et al. Effect of surface topography on room temperature tensile ductility of TiAl [J]. JOM, 2017, 69: 2583 | [19] | Lin B C. Study on effect of surface condition and casting defects on mechanical properties of TiAl [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017 | [19] | (林博超. 表面状态和铸造缺陷对TiAl力学性能影响研究 [D]. 沈阳: 中国科学院金属研究所, 2017) | [20] | Liu R C. Microstructure evolution and mechanical properties of Ti-47Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [D]. Beijing: University of Chinese Academy of Sciences, 2013 | [20] | (刘仁慈. Ti-47Al-2Cr-2Nb-0.15B合金挤压变形组织演变及其力学性能研究 [D]. 北京: 中国科学院大学, 2013) | [21] | Hyman M E, McCullough C, Valencia J J, et al. Microstructure evolution in TiAl alloys with B additions: Conventional solidification [J]. Metall. Mater. Trans., 1989, 20A: 1847 | [22] | Witusiewicz V T, Bondar A A, Hecht U, et al. The Al-B-Nb-Ti system: V. Thermodynamic description of the ternary system Al-B-Ti [J]. J. Alloys Compd., 2009, 474: 86 | [23] | Maziasz P J, Liu C T. Development of ultrafine lamellar structures in two-phase γ-TiAl alloys [J]. Metall. Mater. Trans., 1998, 29A: 105 | [24] | Lin B C, Liu R C, Jia Q, et al. Effect of yttria inclusion on room temperature tensile properties of investment cast TiAl [J]. Mater. Sci. Eng., 2018, A712: 73 | [25] | Liu R C, Liu D, Tan J, et al. Textures of rectangular extrusions and their effects on the mechanical properties of thermo-mechanically treated, lamellar microstructure, Ti-47Al-2Cr-2Nb-0.15B [J]. Intermetallics, 2014, 52: 110 | [26] | Huang X X. Size effects on the strength of metals [J]. Acta Metall. Sin., 2014, 50: 137 | [26] | (黄晓旭. 金属强度的尺寸效应 [J]. 金属学报, 2014, 50: 137) | [27] | Yang C, Jiang H, Hu D, et al. Effect of boron concentration on phase transformation texture in as-solidified Ti44Al8NbxB [J]. Scr. Mater., 2012, 67: 85 | [28] | Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641 | [28] | (刘仁慈, 王 震, 刘 冬等. Ti-45.5A1-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641) | [29] | Hu D, Jiang H, Wu X. Microstructure and tensile properties of cast Ti-44Al-4Nb-4Hf-0.1Si-0.1B alloy with refined lamellar microstructures [J]. Intermetallics, 2009, 17: 744 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|