Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1359-1366    DOI: 10.11900/0412.1961.2019.00108
  研究论文 本期目录 | 过刊浏览 |
节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性
陈雷1,2,郝硕1,2,梅瑞雪2,贾伟2,李文权2,郭宝峰2()
1. 燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
2. 燕山大学机械工程学院 秦皇岛 066004
Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel
CHEN Lei1,2,HAO Shuo 1,2,MEI Ruixue 2,JIA Wei 2,LI Wenquan 2,GUO Baofeng2()
1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
引用本文:

陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
CHEN Lei, HAO Shuo, MEI Ruixue, JIA Wei, LI Wenquan, GUO Baofeng. Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. Acta Metall Sin, 2019, 55(11): 1359-1366.

全文: PDF(6212 KB)   HTML
摘要: 

在Gleeble-3800试验机上进行了经1000~1200 ℃固溶处理后的节约型双相不锈钢(LDX)的拉伸变形实验,利用TEM分析了其加工硬化特性的微观机制,利用XRD测定计算了不同条件下形变诱导马氏体的饱和转变量。基于加工硬化规律对变形温度(室温~100 ℃)的敏感性,分别提出了室温变形时TRIP效应诱发塑性增量(或均匀延伸率增量)的量化指标:表观塑性增量(Δe)、单位体积马氏体诱发的平均塑性增量(Δeˉ)及只与奥氏体稳定性有关的本征塑性增量(Δe*),探讨了固溶温度对它们的影响规律。结果表明:LDX中形变诱导马氏体相变(SIMT)存有γεα′与γα′ 2种机制,引发TRIP效应并使LDX表现出“三阶段”加工硬化特征。不同固溶温度分别对应不同的临界变形温度(Md),使LDX在Md温度变形时不存在TRIP,固溶温度越高,Md越低、Δe越小。随着固溶温度增加,Δeˉ逐渐增加,而Δe*则逐渐减小,即奥氏体越稳定,TRIP本征增量越小。此外,ΔeˉΔe*均与奥氏体稳定性系数(k)间存在一定的线性关系。

关键词 节约型双相不锈钢固溶温度形变诱导马氏体相变TRIP效应塑性增量    
Abstract

Recently, advanced lean duplex stainless steels (LDXs) with exceptionally good tensile properties by transformation-induced plasticity (TRIP) have been developed to respond to the skyrocketing raw material cost. In these new alloys, TRIP in the metastable austenite phase is expected to dominate overall deformation of the steels. Solution annealing, as a critical step of production processing, affects the austenite characteristics in LDXs, such as volume fraction and mechanical stability of austenite, which in turn influences its TRIP behavior. In order to further develop advanced LDXs, an assessment in the plastic increment of TRIP and its dependence on solution treatment are necessary. In this work, the tensile deformation test of a LDX which was annealed in the range of 1000~1200 ℃ was carried out on a Gleeble-3800 machine. The microstructural mechanism of work hardening characteristics was characterized by TEM, and the saturation of strain-induced martensite (SIM) under different conditions was calculated by XRD. Some quantitative indicators which can characterize the plastic increment of TRIP were proposed, including apparent plastic increment (Δe), average plastic increment (Δeˉ) induced by unit volume SIM and intrinsic plastic increment (Δe*) related only to mechanical stability of austenite. Meanwhile, their dependences on annealing temperature were discussed. The results show that SIM can develop in two ways of γεα′ and γα′ whereby the work hardening of the LDX exhibit a "three-stage" characteristic. There is a critical deformation temperature (Md) where the TRIP is absent at every annealing temperatures. The higher the annealing temperature is, the smaller the Md and the Δeare. As annealing temperature increases, Δeˉ increases, while Δe* decreases, indicating a fact that the more stable the austenite is, the smaller the intrinsic plastic increment of TRIP is. In addition, both Δeˉ and Δe* show a linear relationship with the austenite stability coefficient (k).

Key wordslean duplex stainless steel    annealing temperature    deformation-induced martensitic transformation    TRIP effect    plastic increment
收稿日期: 2019-04-10     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目Nos(51675467);国家自然科学基金项目Nos(51675465);中国博士后科学基金项目Nos(2016M600194);中国博士后科学基金项目Nos(2017T100712);河北省自然科学基金项目No(E2016203284)
作者简介: 陈雷,男,1982年生,教授,博士
图1  2205钢在不同拉伸温度下的应力-应变曲线及加工硬化率曲线
图2  节约型双相不锈钢(LDX)与2205钢的拉伸变形曲线与加工硬化特征
图3  LDX拉伸断口附近微观组织的TEM像
图4  典型固溶温度下LDX经不同温度拉伸后的工程应力-工程应变曲线
Ta / ℃Td / ℃σs / MPaσb / MPae / %eu / %
1000RT56698461.255.0
5056082057.252.2
7055578555.750.8
8055276138.429.2
9055175840.928.7
1050RT54098663.857.6
5053790858.254.6
7053582755.052.8
7553278052.832.8
8053077549.031.0
1100RT53196665.158.1
5053082060.255.2
6052876858.653.0
7052374751.434.5
9051474547.833.0
1150RT52280563.557.0
5051977559.554.3
6551869050.034.8
7051667552.035.0
1200RT52079663.556.5
5051677559.453.7
6051171449.835.8
7050970046.834.8
表1  各条件下LDX的力学性能
图5  典型固溶温度下在室温和临界温度拉伸的真应力-真应变与加工硬化率曲线
Ta / ℃Md / ℃Δe / %VγkΔe* / %VMΔeˉ / %
10008025.80.484.390.5380.4100.629
10507524.80.4634.220.5360.3950.628
11007023.60.4463.980.5290.3740.631
11506522.20.4283.720.5190.3480.638
12006020.80.4103.380.5070.3200.649
表2  不同固溶温度下组织与力学性能及计算结果
图6  不同条件下LDX的XRD谱
图7  不同奥氏体稳定性下的本征塑性增量
[1] ZhaoY, ZhangW N, LiuX, et al. Development of TRIP-aided lean duplex stainless steel by twin-roll strip casting and its deformation mechanism [J]. Metall. Mater. Trans., 2016, 47A: 6292
[2] HerreraC, PongeD, RaabeD. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
[3] ChenL, ZhangY J, LiF, et al. Effect of solution temperature on TRIP/TWIP behavior of a lean duplex stainless steel [J]. Iron Steel, 2017, 52(4): 55
[3] 陈 雷, 张英杰, 李 飞等. 固溶温度对节约型双相不锈钢TRIP/TWIP行为的影响 [J]. 钢铁, 2017, 52(4): 55
[4] ZhangW, HuJ C. Effect of annealing temperature on transformation induced plasticity effect of a lean duplex stainless steel [J]. Mater. Charact., 2013, 79: 37
[5] ChoiJ Y, LeeJ, LeeK, et al. Effects of the strain rate on the tensile properties of a TRIP-aided duplex stainless steel [J]. Mater. Sci. Eng., 2016, A666: 280
[6] MoallemiM, Zarei-HanzakiA, BaghbadoraniH S. Evolution of microstructure and mechanical properties in a cold deformed nitrogen bearing TRIP-assisted duplex stainless steel after reversion annealing [J]. Mater. Sci. Eng., 2017, A683: 83
[7] ZhangW F, ChenY M, ZhuJ H. Quantitative characterization of M-transformation-induced plasticity and effect of alloy elements [J]. Chin. J. Mater. Res., 2001, 15: 323
[7] 张旺峰, 陈瑜眉, 朱金华. 马氏体相变诱发塑性量化表征及合金元素的影响 [J]. 材料研究学报, 2001, 15: 323
[8] ZhangW F, ZhuJ H, CaoC X. Stress relaxation mechanism and calculation method of TRIP increment [J]. Met. Heat Treat, 2005, 30(2): 62
[8] 张旺峰, 朱金华, 曹春晓. 相变诱发塑性的应力松弛机制及塑性增量计算方法 [J]. 金属热处理, 2005, 30(2): 62
[9] ChenL, LiF, ZhangY J, et al. Calculation for the phase diagram and stability of metastable austenite in a TRIP/TWIP duplex stainless steel [J]. J. Yanshan Univ., 2016, 40: 35
[9] 陈 雷, 李 飞, 张英杰等. 一种TRIP/TWIP型双相不锈钢的相图及其亚稳奥氏体组织稳定性计算 [J]. 燕山大学学报, 2016, 40: 35
[10] SaenarjhanN, KangJ H, LeeS C, et al. Influence of annealing temperature on deformation behavior of 329LA lean duplex stainless steel [J]. Mater. Sci. Eng., 2017, A679: 531
[11] GuoB F, ZhangQ F, ChenL, et al. Influence of annealing temperature on the strain-hardening behavior of a lean duplex stainless steel [J]. Mater. Sci. Eng., 2018, A722: 216
[12] DieterG E. Mechanical Metallurgy [M]. New York: McGraw-Hill Book Company, 1988: 289
[13] KangJ Y, KimH, KimK I, et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP) [J]. Mater. Sci. Eng., 2017, A681: 114
[14] ZhangH. Study on the stamping characteristics and technology of low-nickel austenitic stainless steel [D]. Guangzhou: South China University of Technology, 2016
[14] 张 豪. 节镍型奥氏体不锈钢冲压成形特性及拉深工艺研究 [D]. 广州: 华南理工大学, 2016
[15] TsuchidaN, YamaguchiY, MorimotoY, et al. Effects of temperature and strain rate on TRIP effect in SUS301L metastable austenitic stainless steel [J]. ISIJ Int., 2013, 53: 1881
[16] TsuchidaN, MorimotoY, TonanT, et al. Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel [J]. ISIJ Int., 2011, 51: 124
[17] WeissA, GutteH, MolaJ. Contributions of ε and α' TRIP effects to the strength and ductility of AISI 304 (X5CrNi18-10) austenitic stainless steel [J]. Metall. Mater. Trans., 2016, 47A: 112
[18] FuJ G, ZhangC Y. Basic Principle of Steel Structure [M]. Zhengzhou: The Yellow River Water Conservancy Press, 2011: 40
[18] 傅菊根, 张春玉. 钢结构基本原理 [M]. 郑州: 黄河水利出版社, 2011: 40
[19] OlsonG B, CohenM. Kinetics of strain-induced martensitic nucleation [J]. Metall. Mater. Trans., 1975, 6A: 791
[20] ChoiJ Y, JiJ H, HwangS W, et al. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition [J]. Mater. Sci. Eng., 2011, A528: 6012
[21] ChoiJ Y, JiJ H, HwangS W, et al. Effects of nitrogen content on TRIP of Fe-20Cr-5Mn-xN duplex stainless steel [J]. Mater. Sci. Eng., 2012, A534: 673
[22] ChoiJ Y, JiJ H, HwangS W, et al. TRIP aided deformation of a near-Ni-free, Mn-N bearing duplex stainless steel [J]. Mater. Sci. Eng., 2012, A535: 32
[23] MoverareJ J, OdénM. Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel [J]. Metal. Mater. Trans., 2002, 33A: 57
[24] CaiZ H, DingH, MisraR D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[3] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[4] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[5] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[6] 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.
[7] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[8] 方轶琉 刘振宇 张维娜 王国栋 宋红梅 江来珠. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46(6): 641-646.
[9] 鲁法云 杨平 孟利 毛卫民. 18Mn TRIP钢温变形过程中马氏体逆相变行为[J]. 金属学报, 2010, 46(10): 1153-1160.
[10] 张维娜 刘振宇 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J]. 金属学报, 2010, 46(10): 1230-1236.
[11] 何毅; 刘凯; 杨柯 . 固溶温度对超纯净18Ni(350)马氏体时效钢断裂韧性及微观组织的影响[J]. 金属学报, 2003, 39(4): 381-386 .
[12] 马华政;曾炳胜;张安宁. 合金元素对镍基高温合金γ′固溶温度的影响[J]. 金属学报, 1988, 24(6): 404-409.