Please wait a minute...
金属学报  2019, Vol. 55 Issue (11): 1379-1387    DOI: 10.11900/0412.1961.2019.00074
  研究论文 本期目录 | 过刊浏览 |
调质处理对G520钢焊接接头组织及性能的影响
张敏(),贾芳,程康康,李洁,许帅,仝雄伟
西安理工大学材料科学与工程学院 西安 710048
Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel
ZHANG Min(),JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei
School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
全文: PDF(13035 KB)   HTML
摘要: 

对G520马氏体不锈钢进行焊条电弧焊接和调质处理,利用OM、SEM、EBSD、XRD以及拉伸、冲击等实验研究了调质顺序对焊接接头组织及性能的影响。结果表明,焊前调质处理下焊接接头各区域组织差别较大,焊缝粗大柱状组织呈长条状分布且含有大量δ-铁素体;焊后调质处理焊接接头组织为均匀细小的板条马氏体。与焊前调质相比,焊后调质处理的焊接接头具有更优异的强韧性。焊缝经调质处理后,δ-铁素体得以溶解,粗大柱状组织分解成较小的马氏体板条块,在板条马氏体边界和原始奥氏体晶界形成一定量的逆变奥氏体,使大角度晶界比例增加,有效改善了焊缝金属强韧性。

关键词 G520不锈钢焊接-调质板条马氏体大角度晶界    
Abstract

As a low carbon martensitic precipitation hardening stainless steel, G520 steel has been widely used in heavy load and corrosion-resistant components such as compressor impeller due to its high strength with reasonable toughness, ductility and corrosion resistance. Although heat treatment usually presents a tendency to promote a improvement of mechanical properties, it may cause unpredictable changes in the microstructure and properties of high strength steel weldment, which is extremely complicated and normally very sensitive to heat. Based on this scenario, the influence of quenching and tempering on the mechanical and microstructural properties of G520 steel weld metals obtained by shielded metal arc welding (SMAW) was studied in this work. Tensile test, impact test and metallographic examination by OM, XRD, SEM and EBSD were performed for mechanical and microstructural characterization. The results indicate that, the welded joints after quenching (at 850 ℃, oil cooling) and tempering (at 520 ℃, air cooling) have better strength and toughness than the pre-weld quenching and tempering. Moreover, the quenching and tempering treatment of the weld metal, breaks down the columnar microstructure into smaller martensite sub-blocks. Meanwhile, it form a certain amount of inversion austenite at the prior austenite grain boundary and the boundary of the lath martensite. As above, the proportion of the large angle grain boundary is increased, which effectively improves the toughness of the weld metal.

Key wordsG520 stainless steel    welding-quenching and tempering    lath martensitic    high angle grain boundary
收稿日期: 2019-03-20     
ZTFLH:  TG457.1  
基金资助:国家自然科学基金项目No(51974243);陕西省自然科学基础研究计划项目No(2019JZ-31);以及西安市科技计划项目No(201805037YD15CG21(16))
通讯作者: 张敏     E-mail: zhmmn@xaut.edu.cn
Corresponding author: Min ZHANG     E-mail: zhmmn@xaut.edu.cn
作者简介: 张敏,男,1967年生,教授,博士

引用本文:

张敏,贾芳,程康康,李洁,许帅,仝雄伟. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379-1387.
Min ZHANG, Fang JIA, Kangkang CHENG, Jie LI, Shuai XU, Xiongwei TONG. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel. Acta Metall Sin, 2019, 55(11): 1379-1387.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00074      或      https://www.ams.org.cn/CN/Y2019/V55/I11/1379

MaterialCSiMnPSNiCrMoCuNb
Base metal≤0.050.3~0.60.5~0.9≤0.025≤0.026.0~7.013.0~15.00.6~0.91.3~1.50.3~0.4
Welding rod≤0.03≤0.450.4~0.7≤0.015≤0.016.2~7.512.5~14.51.0~1.3-0.2~0.4
表1  焊接材料的化学成分 (mass fraction / %)
图1  焊接接头形式示意图
Welding layerd / mmI / AU / Vv / (mm·s-1)
Obverse side 1~23.2120~13525~352.3~3.0
Reverse side 1~23.2120~13525~352.5~3.3
Reverse side 34.0155~16725~303.3~3.8
Obverse side 3~44.0155~16725~303.3~5.0
Obverse side 54.0155~16725~302.8~3.3
Reverse side 4~54.0155~16725~303.3~4.3
表2  G520钢板焊接工艺参数
图2  热处理工艺流程图
图3  2种焊接工艺下焊接接头显微组织的OM像
Materialσs / MPaσb / MPaδ / %Fracture location
Quenched-tempered parent metal1069.01097.521.4-
Quenched-tempered before welding917.01070.515.0Weld metal
Quenched-tempered after welding1055.41118.016.3Weld metal
表3  母材及焊前调质、焊后调质焊接接头拉伸力学性能
图4  焊接接头不同区域的冲击功AKV
图5  不同工艺焊缝及热影响区冲击断口的SEM像
图6  2种焊接工艺下焊缝显微组织的EBSD取向分布图
图7  不同试样的XRD谱
图8  焊缝组织奥氏体晶界的取向差分布图
[1] FanJ L, GuoX L, WuC W, et al. Influence of heat treatments on mechanical behavior of FV520B steel [J]. Exp. Tech., 2015, 39: 55
[2] ZhouQ Q, ZhaiY C. Aging process optimization for a high strength and toughness of FV520B martensitic steel [J]. Acta Metall. Sin., 2009, 45: 1249
[2] 周倩青, 翟玉春. 高强高韧FV520B马氏体钢的时效工艺优化 [J]. 金属学报, 2009, 45: 1249
[3] XuW B, ShiW, ZhangX. Microstructural transformation of martensite precipitation hardening stainless steel during aging process [J]. Trans. Mater. Heat Treat., 2013, 34(Suppl.2: 139
[3] 许文博, 石 伟, 张 欣. 马氏体型沉淀硬化不锈钢时效过程的组织转变 [J]. 材料热处理学报, 2013, 34(增刊2): 139
[4] NiuJ, DongJ M, XueJ. Precipitation-hardening and toughness of precipitation-hardening stainless steel FV520(B) [J]. Mater. Mech. Eng., 2007, 43(12): 78
[4] 牛 靖, 董俊明, 薛 锦. 沉淀硬化不锈钢FV520(B)的析出硬化及韧性 [J]. 机械工程学报, 2007, 43(12): 78
[5] ZhangM, WangW Q, WangP F, et al. Fatigue behavior and mechanism of FV520B in very high cycle regime [J]. Strength Fract. Complex., 2015, 9: 161
[6] ZhaoQ C, WangJ L, ZhangY L, et al. Fatigue behavior and fatigue life for FV520B-I at different loading frequencis [J]. Mater. Rev., 2018, 32: 2837
[6] 赵清晨, 王金龙, 张元良等. 不同加载频率下FV520B-I的疲劳行为与疲劳寿命 [J]. 材料导报, 2018, 32: 2837
[7] XiangL H, PanJ Y, ChenS Y, et al. Experimental investigation on the stress corrosion cracking of FV520B welded joint in natural gas environment with ECP and SSRT [J]. Eng. Fract. Mech., 2018, 200: 166.
[8] XiangL H, PanJ Y, ChenS Y. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen [J]. Results Phys., 2018, 9: 463
[9] AmreiM M, MonajatiH, ThibaultD, et al. Effects of various post-weld heat treatments on austenite and carbide formation in a 13Cr4Ni steel multipass weld [J]. Metallogr. Microstruct. Anal., 2016, 5: 50
[10] GaoH, SongY Y, ZhaoM J, et al. Effects of tempering on the microstructure and mechanical property of electron beam welding joint of 9Cr2WVTa steel [J]. Acta Metall. Sin., 2014, 50: 1429
[10] 高 恒, 宋元元, 赵明久等. 回火对9Cr2WVTa钢电子束焊接接头组织和力学性能的影响 [J]. 金属学报, 2014, 50: 1429
[11] JorgeJ C F, MonteiroJ L D, GomesA J C, et al. Influence of welding procedure and PWHT on HSLA steel weld metals [J]. J. Mater. Res. Technol., 2019, 8: 561
[12] XuK C, WangH Q, GaiJ F. Draught Fan Manual [M]. 2nd Ed., Beijing: Mechanical Industry Stress, 2011: 113
[12] 续魁昌, 王洪强, 盖京方. 风机手册 [M]. 第2版,北京: 机械工业出版社, 2011: 113
[13] LiX L, WangZ D. Effect of one step Q&P process on microstructure and mechanical properties of a dual martensite steel [J]. Acta Metall. Sin., 2015, 51: 534
[13] 李小琳, 王昭东. 一步Q&P工艺对双马氏体钢微观组织与力学性能的影响 [J]. 金属学报, 2015, 51: 534
[14] AmreiM M, VerremanY, BridierF, et al. Microstructure characterization of single and multipass 13Cr4Ni steel welded joints [J]. Metallogr. Microstruct. Anal., 2015, 4: 207
[15] WangX N, ChenX M, SunQ, et al. Formation mechanism of δ-ferrite and metallurgy reaction in molten pool during press-hardened steel laser welding [J]. Mater. Lett., 2017, 206: 143
[16] HuX Q, XiaoN M, LuoX H, et al. Effects of δ-ferrite on the microstructure and mechanical properties in a tungsten-alloyed 10%Cr ultra-supercritical steel [J]. Acta Metall. Sin., 2009, 45: 553
[16] 胡小强, 肖纳敏, 罗兴宏等. 含W型10%Cr超超临界钢中δ-铁素体的微观结构及其对力学性能的影响 [J]. 金属学报, 2009, 45: 553
[17] XuB S, FangJ X, DongS Y, et al. Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding stainless FV520B steel [J]. Acta Metall. Sin., 2016, 52: 1
[17] 徐滨士, 方金祥, 董世运等. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响 [J]. 金属学报, 2016, 52: 1
[18] XiaoF R. Influence of intermediate treatment on microstructure and properties of stainless steel FV520(B) [J]. Trans. Met. Heat Treat., 1999, 20(4): 35
[18] 肖福仁. 调整处理对 FV520(B)不锈钢组织与性能的影响 [J]. 金属热处理学报, 1999, 20(4): 35
[19] LiuY R, YeD, YongQ L, et al. Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel [J]. J. Iron Steel Res. Int., 2011, 18: 60
[20] CuiZ Q, QinY C. Metallography and Heat Treatment [M]. 2nd Ed., Beijing: Mechanical Industry Stress, 2007: 252
[20] 崔忠圻, 覃耀春. 金属学与热处理 [M]. 第2版,北京: 机械工业出版社, 2007: 252
[21] SongY Y, PingD H, YinF X, et al. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Sci. Eng., 2010, A527: 614
[22] ParkE S, YooD K, SungJ H, et al. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel [J]. Met. Mater. Int., 2004, 10: 521
[23] SongY Y, LiX Y, RongL J, et al. Formation of the reversed austenite during intercritical tempering in a Fe-13%Cr-4%Ni-Mo martensitic stainless steel [J]. Mater. Lett., 2010, 64: 1411
[24] XuW S, LiY, WangC X, et al. Analysis on cyclic phase transformation of maraging steel by EBSD [J]. Trans. Mater. Heat Treat., 2014, 35(10): 154
[24] 徐文帅, 厉 勇, 王春旭等. 马氏体时效钢循环相变的EBSD分析 [J]. 材料热处理学报, 2014, 35(10): 154
[25] QiaoY, ArgonA S. Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2%Si alloy: Experiments and modeling [J]. Mech. Mater., 2003, 35: 129
[26] YeliG, AugerM A, WilfordK, et al. Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties [J]. Acta Mater., 2017, 125: 38
[27] JingC N, FanJ C, WangC L, et al. Characterization and formation mechanism of the weld interface of TRIP590 steel laser welding [J]. Chin. J. Lasers, 2015, 42(4): 57
[27] 景财年, 范吉超, 王丛雷等. 激光焊接TRIP590钢焊缝微观结构及形成机理研究 [J]. 中国激光, 2015, 42(4): 57
[28] ZhangW Y. Welding Metallurgy [M]. Beijing: Mechanical Industry Stress, 1999: 127
[28] 张文钺. 焊接冶金学 [M]. 北京: 机械工业出版社, 1999: 127
[29] ZhangM, LiuM Z, ZhangM, et al. Microstructure and mechanical properties of FV520B affected by austenitizing elements Mn and Ni [J]. J. Mater. Eng., 2016, 44(3): 40
[29] 张 敏, 刘明志, 张 明等. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响 [J]. 材料工程, 2016, 44(3): 40
[30] LongS L, LiangY L, JiangY, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel [J]. Mater. Sci. Eng., 2016, A676: 38
[31] Dáz-FuentesM, Iza-MendiaA, GutiérrezI. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
[32] LiaoB, XiaoF R. Research on microstructure and strength-toughening mechanism of acicular ferrite pipeline steel [J]. Trans. Mater. Heat Treat., 2009, 30(2): 57
[32] 廖 波, 肖福仁. 针状铁素体管线钢组织及强韧化机理研究 [J]. 材料热处理学报, 2009, 30(2): 57
[1] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[2] 周砚磊 徐洋 陈俊 刘振宇. FH550级海洋平台用钢冲击断裂行为实验研究[J]. 金属学报, 2011, 47(11): 1382-1387.
[3] 邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.
[4] 吴静 刘新新 顾新福 戴付志 杨海涛 张文征 . 铁基合金中板条马氏体帐篷型表面浮凸位移的定量分析[J]. 金属学报, 2009, 45(12): 1425-1434.
[5] 符寒光; 蒋志强 . 耐磨铸造Fe-B-C合金的研究[J]. 金属学报, 2006, 42(5): 545-548 .
[6] 梁益龙;雷旻;钟蜀辉;江山. 板条马氏体钢的断裂韧性与缺口韧性、拉伸塑性的关系[J]. 金属学报, 1998, 34(9): 950-958.
[7] 罗承萍;许麟康;查健中. 300M超高强度钢板条马氏体的晶体学研究[J]. 金属学报, 1993, 29(7): 28-33.