Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 389-398    DOI: 10.11900/0412.1961.2018.00399
  本期目录 | 过刊浏览 |
北京工业大学材料科学与工程学院 北京 100124
Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys
Yaohong LIU,Zhaohui WANG(),Ke LIU,Shubo LI,Wenbo DU
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(11584 KB)   HTML

采用优化的RDG (Rappaz-Drezet-Gremaud)热裂模型预测了Mg-5Zn-xEr (x=0.83、1.25、2.5、5,质量分数,%)三元多相合金的铸造热裂敏感性,并利用“约束杆”钢模铸造(CRC)实验评价了该合金的热裂敏感性。结果表明,优化的RDG热裂模型可准确地预测Mg-5Zn-xEr镁合金的热裂敏感性:随着Er含量的增加,合金的热裂敏感性呈先增加后降低的趋势,当Er含量为2.5%时合金的热裂敏感性最高,当Er含量为5.0%时合金的热裂敏感性最低,与实验结果相一致。对铸件凝固曲线、相组成、微观组织等进一步分析表明,当Er含量提高至2.5%时,合金凝固过程发生包晶反应生成I相的同时消耗了液相,并且扩大了合金的凝固温度区间,使合金的热裂敏感性上升;Er含量继续提高至5.0%时,合金在凝固过程中发生L→α-Mg+W的共晶反应,凝固温度区间减小,有利于凝固后期枝晶间裂纹的补缩,显著降低了合金的热裂敏感性。

关键词 RDG模型Mg-Zn-Er合金热裂敏感性微观组织    

Mg-Zn-Er casting magnesium alloys have good properties, such as high specific strength, high specific stiffness and remarkable temperature creep properties. Current researches mainly focused on the phases and mechanical properties at room and high temperatures. However, the effect of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys was barely studied. In this work, a modified RDG (Rappaz-Drezet-Gremaud) model for predicting the hot cracking susceptibility of Mg-5Zn-xEr (x=0.83, 1.25, 2.5, 5, mass fraction, %) ternary alloys was proposed, which considered the effects of phase and solidification temperature range on the hot cracking susceptibility of the multiphase alloys. And, the hot cracking susceptibility was evaluated by the experiment of constrained rod casting (CRC). The results indicated that the modified RDG model could accurately predict the hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys. The hot cracking susceptibility increased with the addition of Er up to 2.5%, and Mg-5Zn-2.5Er alloy showed the maximal hot cracking susceptibility; when the addition of Er increased to 5.0%, Mg-5Zn-5Er alloy exhibited the minimal hot cracking susceptibility. The calculated results were consistent with the experimental ones. Further analysis on the casting solidification curves, phases and microstructures showed that I-phase precipitated by peritectic reaction during solidification of Mg-5Zn-2.5Er alloy depleted liquid phases and extended the solidification temperature range of the alloy, leading to the hot cracking susceptibility increasing. The Mg-5Zn-5Er alloy underwent eutectic reaction of L→α-Mg+W during solidification, which reduced the solidification temperature range. Meanwhile, this process was beneficial to feeding the interdendritic hot cracking in the terminal period of solidification, which significantly decreased the hot cracking susceptibility of Mg-5Zn-5Er alloy.

Key wordsRDG model    Mg-Zn-Er alloy    hot cracking susceptibility    microstructure
收稿日期: 2018-08-30     
ZTFLH:  TG146  
通讯作者: 王朝辉     E-mail:
Corresponding author: Zhaohui WANG     E-mail:
作者简介: 刘耀鸿,男,1993年生,硕士生


刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
Yaohong LIU, Zhaohui WANG, Ke LIU, Shubo LI, Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys. Acta Metall Sin, 2019, 55(3): 389-398.

链接本文:      或

Alloy (Zn/Er ratio)ZnErMg
Mg-5Zn-0.83Er (6)5.310.71Bal.
Mg-5Zn-1.25Er (4)5.311.19Bal.
Mg-5Zn-2.5Er (2)5.322.36Bal.
Mg-5Zn-5Er (1)5.455.31Bal.
表1  Mg-5Zn-xEr合金的成分
图1  热裂敏感性影响系数示意图
图2  热裂敏感性实验装置示意图
图3  Mg-5Zn-xEr合金的固相体积分数(fs)与凝固温度(T)关系曲线
AlloyFitting function expressionR2





fs(T)=0.98886-3.854×10-12exp (0.042T)

fs(T)=0.971-3.09×10-9exp (0.031T)

fs(T)=0.9779-5.687×10-16exp (0.056T)

fs(T)=1.00089-9.178×10-10exp (0.033T)





表2  Mg-5Zn-xEr合金的fs-T拟合函数表达式及其相关系数(R2)
图4  Mg-5Zn-xEr合金热裂敏感性预测
图5  Mg-5Zn-xEr合金热裂敏感性试样及评价结果(临界尺寸法实验)
图6  Mg-5Zn-xEr合金的XRD谱
图7  Mg-5Zn-xEr合金的SEM像及EDS谱
图8  Mg-5Zn-xEr合金的凝固曲线(临界尺寸法实验)
表3  Mg-5Zn-xEr合金的各相析出温度和凝固区间范围(临界尺寸法实验)
图9  Mg-5Zn-xEr合金热裂断口形貌(纵截面)
图10  Mg-5Zn-xEr合金热裂断口形貌(俯视图)
[1] Song J, Xiong S M. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy [J]. J. Alloys Compd., 2011, 509: 1866
[2] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
[3] Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
[4] Nasr Esfahani M R, Niroumand B. Study of hot tearing of A206 aluminum alloy using instrumented constrained T-shaped casting method [J]. Mater. Charact., 2010, 61: 318
[5] Liu J W, Kou S D. Susceptibility of ternary aluminum alloys to cracking during solidification [J]. Acta Mater., 2017, 125: 513
[6] Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
[7] Shin J, Kim T, Kim D E, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications [J]. J. Alloys Compd., 2017, 698: 577
[8] Huang H, Fu P H, Wang Y X, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 922
[9] Stangeland A, Mo A, M' Hamdi M, et al. Thermal strain in the mushy zone related to hot tearing [J]. Metall. Mater. Trans., 2006, 37A: 705
[10] Easton M A, Wang H, Grandfield J, et al. Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys [J]. Metall. Mater. Trans., 2012, 43A: 3227
[11] Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
[12] Lahaie D J, Bouchard M. Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing [J]. Metall. Mater. Trans., 2001, 32B: 697
[13] Suyitno, Kool W H, Katgerman L. Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy [J]. Metall. Mater. Trans., 2005, 36A: 1537
[14] Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
[15] Suyitno, Kool W H, Katgerman L. Integrated approach for prediction of hot tearing [J]. Metall. Mater. Trans., 2009, 40A: 2388
[16] Kou S D. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
[17] Srinivasan A, Huang Y, Mendis C L, et al. Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys [J]. Mater. Sci. Eng., 2014, A595: 224
[18] Luo Z P, Zhang S Q, Tang Y L, et al. Quasicrystals in as-cast Mg-Zn-RE alloys [J]. Scr. Metall. Mater., 1993, 28: 1513
[19] Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles [J]. Acta Mater., 2002, 50: 2343
[20] Luo Z P, Zhang S Q. Comment on the so-called Z-phase in magnesium alloys containing zinc and rare-earth elements [J]. J. Mater. Sci. Lett., 1993, 12: 1490
[21] Liu K, Wang Q F, Du W B, et al. Failure mechanism of as-cast Mg-6Zn-2Er alloy during tensile test at room temperature [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3193
[22] Lee J Y, Kim D H, Lim H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys [J]. Mater. Lett., 2005, 59: 3801
[23] Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
[24] Li H, Du W B, Li J H, et al. Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1212
[25] Wei Z Q, Liu Z, Wang Z, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Chin. J. Nonferrous Met., 2018, 28: 233
[25] 魏子淇, 刘 正, 王 志等. 钇对Mg-Zn-Y-Zr合金热裂敏感性影响 [J]. 中国有色金属学报, 2018, 28: 233
[26] Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing formation mechanism of Mg-Zn-Y-Zr alloys [J]. Mater. Sci. Technol., 2014, 30: 1214
[27] Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
[28] Gunde P, Schiffl A, Uggowitzer P J. Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys [J]. Mater. Sci. Eng., 2010, A527: 7074
[29] Xu R F. Study on hot tearing formation in hypoeutectic Al-Si alloys [D]. Jinan: Shandong University, 2014
[29] 许荣福. 亚共晶Al-Si合金热裂形成过程的研究 [D]. 济南: 山东大学, 2014
[30] Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magn. Alloys, 2016, 4: 151
[31] Zhou Y, Mao P L, Wang Z, et al. Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys [J]. Acta Metall. Sin., 2017, 53: 851
[31] 周 野, 毛萍莉, 王 志等. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究 [J]. 金属学报, 2017, 53: 851
[32] Zhang S B. Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
[32] 张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
[33] Cao G, Kou S. Hot tearing of ternary Mg-Al-Ca alloy castings [J]. Metall. Mater. Trans., 2006, 37A: 3647
[34] Easton M A, Gibson M A, Zhu S M, et al. An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys [J]. Metall. Mater. Trans., 2014, 45A: 3586
[35] Farup I, Mo A. Two-phase modeling of mushy zone parameters associated with hot tearing [J]. Metall. Mater. Trans., 2000, 31A: 1461
[36] Ludwig O, Drezet J M, Martin C L, et al. Rheological behavior of Al-Cu alloys during solidification: Constitutive modeling, experimental identification, and numerical study [J]. Metall. Mater. Trans., 2005, 36A: 1525
[37] Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundrymen, 1981, 74: 65
[38] Vernède S, Jarry P, Rappaz M. A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding [J]. Acta Mater., 2006, 54: 4023
[39] Vernède S, Dantzig J A, Rappaz M. A mesoscale granular model for the mechanical behavior of alloys during solidification [J]. Acta Mater., 2009, 57: 1554
[40] Li H. Research on composition range for icosahedral quasicrystalline phase and mechanical properties of as-cast Mg-Zn-Er alloys [D]. Beijing: Beijing University of Technology, 2011
[40] 李 晗. Mg-Zn-Er镁合金准晶相的形成规律及性能研究 [D]. 北京: 北京工业大学, 2011
[41] Li J H. Study on microstructure and mechanical properties of Mg-Zn-Er alloy reinforced by icosahedral quasicrystalline phase [D]. Beijing: Beijing University of Technology, 2010
[41] 李建辉. 准晶增强Mg-Zn-Er合金显微组织及性能的研究 [D]. 北京: 北京工业大学, 2010
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[4] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[5] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[6] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[7] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[8] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[9] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[10] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[11] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[12] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[13] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[14] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[15] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.