Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 399-409    DOI: 10.11900/0412.1961.2018.00327
  本期目录 | 过刊浏览 |
弥散固态颗粒对Al-Bi合金液-液相分离过程的影响
张林,满田囡,王恩刚()
东北大学材料电磁过程研究教育部重点实验室 沈阳 110819
Influence of Dispersed Solid Particles on the Liquid-Liquid Separation Process of Al-Bi Alloys
Lin ZHANG,Tiannan MAN,Engang WANG()
Key Laboratory of Electromagnetic Processing of Materials Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

张林,满田囡,王恩刚. 弥散固态颗粒对Al-Bi合金液-液相分离过程的影响[J]. 金属学报, 2019, 55(3): 399-409.
Lin ZHANG, Tiannan MAN, Engang WANG. Influence of Dispersed Solid Particles on the Liquid-Liquid Separation Process of Al-Bi Alloys[J]. Acta Metall Sin, 2019, 55(3): 399-409.

全文: PDF(9854 KB)   HTML
摘要: 

通过向Al-Bi难混溶合金中添加稀土生成CeBi2颗粒,在液淬和自然冷却2种冷却方式下研究固态颗粒对液-液相分离的作用。固态颗粒成为富Bi液滴的形核质点,提高了形核率,促进液滴尺寸细化和弥散分布,进而提高了合金耐磨性能。通过分散粒子法对富Bi液滴的运动、生长和凝并行为进行模拟分析,发现Stokes运动是富Bi液滴宏观偏析的主要成因,熔体自然对流对液滴分布也有一定影响。添加Ce增加了凝固各时间段的富Bi液滴数量,细化液滴尺寸,使液滴运动速度降低。与较快出现宏观偏析的Al-Bi合金相比,Al-Bi-Ce合金中虽然有同样的粗化和偏析趋势,但进行速度相对较慢,宏观偏析较轻。液滴在凝并后期出现了尺寸的多峰分布,峰值随液滴尺寸增加由高向低排列。数值模拟结果与实验统计结果体现了较好的一致性。

关键词 难混溶合金Al-BiCe液-液分离固态颗粒    
Abstract

Al-Bi alloy is a kind of bearing material with self-lubricating performance. Whereas, in such immiscible alloys macrosegregation occurs generally due to the miscibility gap in solidification process. This study is designed to produce CeBi2 compound particles in Al-Bi melt through the addition of rare earth element Ce. The solidification experiment is processed with liquid quenching and natural cooling respectively, and the effect of dispersive solid particles on liquid-liquid separation is compared at different cooling rate. The dispersive solid particles act as nucleation site and improve the nucleation rate of Bi-rich droplets in liquid-liquid solidification, leading to the size refinement and dispersive distribution of Bi-rich phase, which promote the bearing performance of Al-Bi alloy. The behavior of Bi-rich droplets is simulated by using of discrete multi-particle approach, considering the movement, growth and collision. The results show that Stokes motion is the main cause of macrosegregation, and the natural convection affects the distribution of droplets. The natural convection prolongs the suspension time of droplets, and reduces the macrosegregation. In the case of Ce addition, CeBi2 acts as nucleation site to enhance the amount of Bi-rich particles in each time step of simulation and refine the droplet size, which lead to a reduction of macrosegregation. Compared with the Ce free specimens, Al-Bi-Ce alloy has a slower segregation rate and relatively less macrosegregation. Both the simulation and experiment results show a multimodal particle size distribution, and their peak value decrease with increasing particle size. The simulated results is in good accordance with the experiment.

Key wordsimmiscible alloy    Al-Bi    Ce    liquid-liquid separation    solid particle
收稿日期: 2018-07-31     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(51674083);国家自然科学基金项目(50901019);高等学校学科创新引智计划项目(B07015)
作者简介: 张 林,男,1979年生,副教授,博士
图1  Al-Bi合金与Al-Bi-Ce合金的液淬组织与空冷凝固组织
图2  Al-Bi合金与Al-Bi-Ce合金液淬组织中的弥散相粒径分布
图3  Al-Bi-Ce合金的SEM像和EDS分析
图4  Al-Bi和Al-Bi-Ce合金的摩擦系数和磨损量随磨损距离的变化
图5  模拟区域的温度场和熔体流场
图6  数值模拟添加Ce对Al-Bi合金凝固过程中弥散相空间分布的影响
图7  Al-Bi合金添加稀土Ce前后平均液滴半径及液滴数量随时间变化
图8  Al-Bi合金与Al-Bi-Ce合金在不同时间点的液滴半径尺寸分布
图9  Al-Bi合金与Al-Bi-Ce合金熔体内部与边缘的液滴半径尺寸分布对比
[1] Ratke L, Diefenbach S. Liquid immiscible alloys [J]. Mater. Sci. Eng., 1995, R15: 263
[2] Manasijević D, Minić D, Balanović L, et al. Experimental investigation and thermodynamic prediction of the Al-Bi-In phase diagram [J]. J. Alloys Compd., 2016, 687: 969
[3] Carlberg T, Fredriksson H. The influence of microgravity on the solidification of Zn-Bi immiscible alloys [J]. Metall. Trans., 1980, 11A: 1665
[4] Huang Q, Luo X H, Li Y Y. An alloy solidification experiment conducted on Shenzhou spacecraft [J]. Adv. Space Res., 2005, 36: 86
[5] Andrews J B, Briggs C J, Robinson M B. Containerless low gravity processing of immiscible gold-rhodium alloys [R]. Alabama: Marshall Space Flight Center, 1990
[6] Wang N, Zhang L, Peng Y L, et al. Composition-dependence of core-shell microstructure formation in monotectic alloys under reduced gravity conditions [J]. J. Alloys Compd., 2016, 663: 379
[7] Chen S, Zhao J Z. Solidification of monotectic alloy under laser surface treatment conditions [J]. Acta Metall. Sin., 2013, 49: 537
[7] 陈 书, 赵九洲. 偏晶合金在激光表面处理条件下的凝固行为研究 [J]. 金属学报, 2013, 49: 537
[8] Li Z Q, Wang W L, Zhai W, et al. Formation mechanism of layered microstructure and monotectic cell within rapidly solidified Fe62.1Sn27.9Si10 alloy [J]. Acta Phys. Sin., 2011, 60: 705
[8] 李志强, 王伟丽, 翟 薇等. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理 [J]. 物理学报, 2011, 60: 705
[9] Wei B, Herlach D M, Sommer F, et al. Rapid solidification of undercooled eutectic and monotectic alloys [J]. Mater. Sci. Eng., 1993, A173: 355
[10] Luo S B, Wang W L, Chang J, et al. A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy [J]. Acta Mater., 2014, 69: 355
[11] Zhao L, Jiang H X, Ahmad T, et al. Study of solidification for gas-atomized droplet of Cu-Co-Fe alloy [J]. Acta Metall. Sin., 2015, 51: 883
[11] 赵 雷, 江鸿翔, Ahmad T等. Cu-Co-Fe合金雾化合金液滴凝固过程研究 [J]. 金属学报, 2015, 51: 883
[12] Zhai W, Liu H M, Zuo P F, et al. Effect of power ultrasound on microstructural characteristics and mechanical properties of Al81.3Sn12.3Cu6.4 monotectic alloy [J]. Prog. Nat. Sci., 2015, 25: 471
[13] Da D A, Jiang W S, Wang Y M. Process of binary monotectic alloy under simulated microgravity effect by electromagnetic force [J]. Chin. Space Sci. Technol., 1988, 8(6): 20
[13] 达道安, 姜万顺, 王毓敏. 用电磁力模拟空间微重力效应制备二元偏晶合金 [J]. 中国空间科学技术, 1988, 8(6): 20)
[14] Jiang H X, He J, Zhao J Z. Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys [J]. Sci. Rep., 2015, 5: 12680
[15] Zhang L, Wang E G, Zuo X W, et al. Effect of high magnetic field on solidified structure of Cu-80%Pb hypermonotectic alloy [J]. Acta Metall. Sin., 2008, 44: 165
[15] 张 林, 王恩刚, 左小伟等. 强磁场对Cu-80%Pb过偏晶合金凝固组织的影响 [J]. 金属学报, 2008, 44: 165
[16] He J, Zhao J Z, Wang X F, et al. Investigation of rapid directional solidification of Al-based immiscible alloys Ⅱ. Effect of static magnetic field [J]. Acta Metall. Sin., 2007, 43: 567
[16] 何 杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究Ⅱ. 恒定磁场的影响 [J]. 金属学报, 2007, 43: 567
[17] Yasuda H, Ohnaka I, Kawakami O, et al. Effect of magnetic field on solidification in Cu-Pb monotectic alloys [J]. ISIJ Int., 2003, 43: 942
[18] Zhang L, Man T N, Huang M H, et al. Numerical simulation of droplets behavior of Cu-Pb immiscible alloys solidifying under magnetic field [J]. Materials, 2017, 10: 1005
[19] Kaban I G, Hoyer W. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys: Differential scanning calorimetry, interfacial tension, and density difference measurements [J]. Phys. Rev., 2008, 77B: 125426
[20] Zhang H W, Xian A P. Effect of the third element on the structure of casting Al-Bi immiscible alloys [J]. Acta Metall. Sin., 2000, 36: 347
[20] 张宏闻, 冼爱平. 第三组元对Al-Bi偏晶合金凝固组织的影响 [J]. 金属学报, 2000, 36: 347
[21] He J, Zhao J Z, Wang X F, et al. Investigation of rapid directional solidification of Al-based immiscible alloys Ⅲ. Effect of the third element [J]. Acta Metall. Sin., 2007, 43: 573
[21] 何 杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究Ⅲ.第三组元的影响 [J]. 金属学报, 2007, 43: 573
[22] Kaban I, K?hler M, Ratke L, et al. Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials [J]. J. Mater. Sci., 2012, 47: 8360
[23] Sun Q, Jiang H X, Zhao J Z, et al. Effect of TiC particles on the liquid-liquid decomposition of Al-Pb alloys [J]. Mater. Des., 2016, 91: 361
[24] Sun Q, Jiang H X, Zhao J Z, et al. Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles [J]. Acta Mater., 2017, 129: 321
[25] Zhang L, Wang E G, Zuo X W, et al. Effect of magnetic field on liquid-liquid separation of Cu-Pb-La hypermonotectic alloy [J]. Rare Met. Mater. Eng., 2015, 44: 344
[25] 张 林, 王恩刚, 左小伟等. 磁场对Cu-Pb-La过偏晶合金液-液分离的作用 [J]. 稀有金属材料与工程, 2015, 44: 344
[26] Nestler B, Wheeler A A, Ratke L, et al. Phase-field model for solidification of a monotectic alloy with convection [J]. Physica, 2000, 141D: 133
[27] Farjami S, Koyama T, Kainuma R, et al. Phase-field simulation of dragging of liquid Bi particles during the thermally activated migration of grain boundaries in the Al-Bi system [J]. Scr. Mater., 2007, 56: 433
[28] Ratke L. Coarsening of liquid Al-Pb dispersions under reduced gravity conditions [J]. Mater. Sci. Eng., 1995, A203: 399
[29] Zhao J Z, Ratke L. A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap [J]. Scr. Mater., 2004, 50: 543
[30] Li H L, Zhao J Z, Zhang Q X, et al. Microstructure formation in a directionally solidified immiscible alloy [J]. Metall. Mater. Trans., 2008, 39A: 3308
[31] Patankar S V. Numerical Heat Transfer and Fluid Flow [M]. New York: Mcgraw-Hill, 1980: 13
[32] Ratke L, Voorhees P W. Growth and Coarsening: Ostwald Ripening in Materials Processing [M]. Berlin, Heidelberg: Springer, 2002: 242
[33] Kaptay G. On the temperature gradient induced interfacial gradient force, acting on precipitated liquid droplets in monotectic liquid alloys [J]. Mater. Sci. Forum, 2006, 508: 269
[1] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[2] 孙小钧, 何杰, 陈斌, 赵九洲, 江鸿翔, 张丽丽, 郝红日. Fe含量对Zr60Cu40-xFex相分离非晶合金组织结构、电阻性能和纳米压痕行为的影响[J]. 金属学报, 2021, 57(5): 675-683.
[3] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[4] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[5] 陈斌,何杰,孙小钧,赵九洲,江鸿翔,张丽丽,郝红日. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收[J]. 金属学报, 2019, 55(6): 751-761.
[6] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[7] 王帅鹏, 罗文华, 李赣, 李海波, 张广丰. La含量对Ce-La合金氢化动力学的影响[J]. 金属学报, 2018, 54(8): 1187-1192.
[8] 帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
[9] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[10] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[11] 李安华, 张月明, 冯海波, 邹宁, 吕忠山, 邹旭杰, 李卫. 烧结Ce-Fe-B磁体的力学性能[J]. 金属学报, 2017, 53(11): 1478-1486.
[12] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.
[13] 张世政,徐要辉,汪庭语,李锐星,才鸿年. In3+掺杂CeO2的固溶度及其储氧能力*[J]. 金属学报, 2016, 52(5): 607-613.
[14] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[15] 岑升波,陈辉,刘艳,马元明,吴影. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1441-1448.