|
|
基于箔材反应退火合成的TiAl基复合材料板材研究进展 |
耿林, 吴昊, 崔喜平, 范国华( ) |
哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 |
|
Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils |
Lin GENG, Hao WU, Xiping CUI, Guohua FAN( ) |
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
Lin GENG,
Hao WU,
Xiping CUI,
Guohua FAN.
Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. Acta Metall Sin, 2018, 54(11): 1625-1636.
[1] | Klassen T, Suryanarayana C, Bormann R.Low-temperature superplasticity in ultrafine-grained Ti5Si3-TiAl composites[J]. Scr. Mater., 2008, 59: 455 | [2] | Liu Y L, Liu L M, Wang S Q, et al.First-principles study of shear deformation in TiAl and Ti3Al[J]. Intermetallics, 2007, 15: 428 | [3] | Loria E A.Gamma titanium aluminides as prospective structural materials[J]. Intermetallics, 2000, 8: 1339 | [4] | Yu H L, Tieu A K, Lu C, et al.A deformation mechanism of hard metal surrounded by soft metal during roll forming[J]. Sci. Rep., 2014, 4: 5017 | [5] | Du Y, Fan G H, Yu T, et al.Effects of interface roughness on the annealing behaviour of laminated Ti-Al composite deformed by hot rolling[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 89: 012021 | [6] | Peng L M, Li Z, Li H.Effects of microalloying and ceramic particulates on mechanical properties of TiAl-based alloys[J]. J. Mater. Sci., 2006, 41: 7524 | [7] | Paul J D H, Appel F, Wagner R. The compression behaviour of niobium alloyed γ-titanium alumindies[J]. Acta Mater., 1998, 46: 1075 | [8] | Kawabata T, Tamura T, Izumi O.Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl[J]. Metall. Trans., 1993, 24A: 141 | [9] | Park H S, Nam S W, Kim N J, et al.Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon[J]. Scr. Mater., 1999, 41: 1197 | [10] | Hecht U, Witusiewicz V, Drevermann A, et al.Grain refinement by low boron additions in niobium-rich TiAl-based alloys[J]. Intermetallics, 2008, 16: 969 | [11] | Muto S, Yamanaka T, Johnson D R, et al. Effects of refractory metals on microstructure and mechanical properties of directionally-solidified TiAl alloys [J]. Mater. Sci. Eng., 2002, A329-331: 424 | [12] | Ding X F, Lin J P, Zhang L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J]. Acta Mater., 2012, 60: 498 | [13] | Lasalmonie A.Intermetallics: Why is it so difficult to introduce them in gas turbine engines?[J]. Intermetallics, 2006, 14: 1123 | [14] | Fang W B, Hu L X, He W X, et al.Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering[J]. Mater. Sci. Eng., 2005, A403: 186 | [15] | Luo J G, Acoff V L.Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils[J]. Mater. Sci. Eng., 2004, A379: 164 | [16] | Pang J C, Fan G H, Cui X P, et al.Mechanical properties of Ti-(SiCp/Al) laminated composite with nano-sized TiAl3 interfacial layer synthesized by roll bonding[J]. Mater. Sci. Eng., 2013, A582: 294 | [17] | Pang J C, Fan G H, Cui X P, et al.Microstructure evolution of in situ (Ti3AlC + Ti5Si3)/Ti3Al composite sheet with a novel quasi-continuous chain reinforcement distribution architecture prepared by using roll bonding and reaction annealing[J]. J. Mater. Sci. Technol., 2013, 29: 1191 | [18] | Luo J G, Acoff V L.Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils[J]. Mater. Sci. Eng., 2006, A433: 334 | [19] | Wang Q W, Fan G H, Geng L, et al.A novel fabrication route to microlaminated TiB2-NiAl composite sheet with {111}<μνω> texture by roll bonding and annealing treatment[J]. Intermetallics, 2013, 37: 46 | [20] | Wu H, Cui X P, Geng L, et al.Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system[J]. Intermetallics, 2013, 43: 8 | [21] | Wu H, Fan G H, Cui X P, et al.A novel approach to accelerate the reaction between Ti and Al[J]. Micron, 2014, 56: 49 | [22] | Mishin Y, Herzig C.Diffusion in the Ti-Al system[J]. Acta Mater., 2000, 48: 589 | [23] | He Y H, Jiang Y, Xu N P, et al.Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect[J]. Adv. Mater., 2007, 19: 2102 | [24] | Cui X P, Fan G H, Geng L, et al.Growth kinetics of TiAl3 layer in multi-laminated Ti-(TiB2/Al) composite sheets during annealing treatment[J]. Mater. Sci. Eng., 2012, A539: 337 | [25] | Wu H, Jin B C, Geng L, et al.Ductile-phase toughening in TiBw/Ti-Ti3Al metallic-intermetallic laminate composites[J]. Metall. Mater. Trans., 2015, 46A: 3803 | [26] | Van Loo F J J, Rieck G D. Diffusion in the titanium-aluminium system—I. Between solid Al and Ti or Ti-Al alloys[J]. Acta Metall., 1973, 21: 61 | [27] | Xu L, Cui Y Y, Hao Y L, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples [J]. Mater. Sci. Eng., 2006, A435-436: 638 | [28] | Fu E K Y, Rawlings R D, McShane H B. Reaction synthesis of titanium aluminides[J]. J. Mater. Sci., 2001, 36: 5537 | [29] | Yao W, Wu A P, Zou G S, et al.Formation process of the bonding joint in Ti/Al diffusion bonding[J]. Mater. Sci. Eng., 2008, A480: 456 | [30] | Wu H, Fan G H, Jin B C, et al.Fabrication and mechanical properties of TiBw/Ti-Ti(Al) laminated composites[J]. Mater. Des., 2016, 89: 697 | [31] | Cui X P, Fan G H, Geng L, et al.Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure[J]. Scr. Mater., 2012, 66: 276 | [32] | Wu H, Fan G H, Cui X P, et al.Mechanical properties of (Ti2AlC+Ti3AlC)-TiAl ceramic-intermetallic laminate (CIL) composites[J]. Mater. Sci. Eng., 2013, A585: 439 | [33] | Martin R, Kampe S L, Marte J S, et al.Microstructure/processing relationships in reaction-synthesized titanium aluminide intermetallic matrix composites[J]. Metall. Mater. Trans., 2002, 33A: 2747 | [34] | Yang R, Cui Y Y, Dong L M, et al.Alloy development and shell mould casting of gamma TiAl[J]. J. Mater. Process. Technol., 2003, 135: 179 | [35] | Perez-Bravo M, Madariaga I, Ostolaza K, et al.Microstructural refinement of a TiAl alloy by a two step heat treatment[J]. Scr. Mater., 2005, 53: 1141 | [36] | Wang J N, Xie K.Grain size refinement of a TiAl alloy by rapid heat treatment[J]. Scr. Mater., 2000, 43: 441 | [37] | Jakob A, Speidel M O.Microstructure and tensile properties of TiAl compounds formed by reactive foil metallurgy[J]. Mater. Sci. Eng., 1994, A189: 129 | [38] | Chaudhari G P, Acoff V L.Titanium aluminide sheets made using roll bonding and reaction annealing[J]. Intermetallics, 2010, 18: 472 | [39] | Court S A, Vasudevan V K, Fraser H L.Deformation mechanisms in the intermetallic compound TiAl[J]. Philos. Mag., 1990, 61A: 141 | [40] | Appel F, Wagner R.Microstructure and deformation of two-phase γ-titanium aluminides[J]. Mater. Sci. Eng., 1998, R22: 187 | [41] | Liu C T, Schneibel J H, Maziasz P J, et al.Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 1996, 4: 429 | [42] | Cui X P, Geng L, Fang K, et al.TiAl-based composite sheet with multi-layer distributed reinforcement prepared by solid-liquid reaction[J]. Acta Metall. Sin., 2013, 49: 1462(崔喜平, 耿林, 方堃等. 固液反应法制备增强体层状分布的TiAl基复合材料板[J]. 金属学报, 2013, 49: 1462) | [43] | Bai H, Walsh F, Gludovatz B, et al.Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J]. Adv. Mater., 2016, 28: 50 | [44] | Bouville F, Maire E, Meille S, et al.Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nat. Mater., 2014, 13: 508 | [45] | Koseki T, Inoue J, Nambu S.Development of multilayer steels for improved combinations of high strength and high ductility[J]. Mater. Trans., 2014, 55: 227 | [46] | Launey M E, Munch E, Alsem D H, et al.A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. J. Roy. Soc. Interface, 2010, 7: 741 | [47] | Launey M E, Ritchie R O.On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103 | [48] | Froes F H, Suryanarayana C, Eliezer D.Synthesis, properties and applications of titanium aluminides[J]. J. Mater. Sci., 1992, 27: 5113 | [49] | Messerschmidt U, Bartsch M, Guder S, et al.Dynamic dislocation behaviour in the intermetallic compounds NiAl, TiAl and MoSi2[J]. Intermetallics, 1998, 6: 729 | [50] | Yamaguchi M, Inui H, Ito K.High-temperature structural intermetallics[J]. Acta Mater., 2000, 48: 307 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|