Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 638-646    DOI: 10.11900/0412.1961.2018.00301
  本期目录 | 过刊浏览 |
触变注射成形法制备石墨烯纳米片增强镁基复合材料
张婷,赵宇宏(),陈利文,梁建权,李沐奚,侯华
1. 中北大学材料科学与工程学院 太原 030051
Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding
Ting ZHANG,Yuhong ZHAO(),Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU
1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
全文: PDF(19229 KB)   HTML
摘要: 

采用触变注射成形的方法制备了石墨烯纳米片(GNPs)增强AZ91D镁基复合材料,利用OM、SEM、EDS、TEM和XRD研究了GNPs含量(0.3%、0.6%、0.9%,质量分数)对镁基复合材料微观组织的影响,并进行了力学性能测试。结果表明,GNPs在基体中呈条状均匀分布,与基体结合良好,GNPs的加入能够细化晶粒尺寸和减少孔隙。与AZ91D镁合金基体相比,GNPs的添加明显提高了复合材料的强度和硬度,当GNPs的含量为0.6%时,复合材料的力学性能最好,硬度和抗拉强度分别达到92.3 HV和245 MPa。

关键词 石墨烯纳米片镁基复合材料触变注射成形力学性能    
Abstract

As a new type of carbon material reinforcement, graphene nanoplatelets (GNPs) have excellent mechanical, electrical, thermal and optical properties. Adding GNPs with a large specific surface area to the magnesium matrix can significantly improve the mechanical properties, the thermal and electrical properties of the magnesium matrix. However, so far, few reports focused on GNPs reinforced magnesium matrix composites, especially for lack of feasible fabrication technologies. Thus, in the present work, a new method for fabricating GNPs reinforced magnesium matrix composites is presented. First, the GNPs were dispersed by ultrasonic dispersion. Subsequently, the AZ91D magnesium alloy particles and the uniformly dispersed GNPs were mixed in a V-type powder mixer. Finally, GNPs reinforced magnesium matrix composites were prepared by semi-solid thixomolding. The effects of GNPs contents (0.3%, 0.6%, 0.9%, mass fraction) on the microstructure and properties of magnesium matrix composites were studied. The results show that the GNPs were uniformly distributed in the matrix, which were well combined with the matrix, and the addition of GNPs could refine the grain size and reduce porosity. Compared with AZ91D magnesium alloy, the addition of GNPs improved the tensile strength and hardness of the material. When the content of GNPs was 0.6%, the mechanical properties of the composites were the best, and the hardness and tensile strength reach up to 92.3 HV and 245 MPa.

Key wordsgraphene nanoplatelet    magnesium matrix composite    thixomolding    mechanical property
收稿日期: 2018-07-02     
ZTFLH:  TG292  
基金资助:国家自然科学基金项目(51774254);国家自然科学基金项目(51774253);国家自然科学基金项目(51701187);国家自然科学基金项目(U1610123);国家自然科学基金项目(51674226);国家自然科学基金项目(51574207);国家自然科学基金项目(51574206);山西省科技重大专项项目(MC2016-06)
通讯作者: 赵宇宏     E-mail: zhaoyuhong@nuc.edu.cn
Corresponding author: Yuhong ZHAO     E-mail: zhaoyuhong@nuc.edu.cn
作者简介: 张 婷,女,1994年生,硕士生

引用本文:

张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
Ting ZHANG, Yuhong ZHAO, Liwen CHEN, Jianquan LIANG, Muxi LI, Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding. Acta Metall Sin, 2019, 55(5): 638-646.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00301      或      https://www.ams.org.cn/CN/Y2019/V55/I5/638

图1  触变注射成形设备示意图
图2  触变注射成形后复合材料试样及取样位置图
图3  石墨烯纳米片(GNPs)的TEM像与XRD谱
图4  混合GNPs前后AZ91D镁合金颗粒的宏观形貌
图5  触变注射成形后AZ91D镁合金和GNPs/AZ91D复合材料的OM像及相应的晶粒尺寸分布
图6  触变注射成形后0.6%GNPs/AZ91D复合材料的SEM像及EDS
图7  触变注射成形后0.6%GNPs/AZ91D复合材料的EDS面扫描分析
图8  触变注射成形后0.6%GNPs/AZ91D复合材料的TEM和HRTEM像
图9  触变注射成形后AZ91D镁合金及GNPs/AZ91D复合材料的XRD谱

Material[border:border-top:solid;border-bottom:solid;]

Theoretical density

g·cm-3

Measured density

g·cm-3

Porosity

%

AZ91D1.8101.6677.9
0.3%GNPs/AZ91D1.8111.6936.5
0.6%GNPs/AZ91D1.8111.7135.4
0.9%GNPs/AZ91D1.8121.7324.4
表1  触变注射成形后AZ91D镁合金及GNPs/AZ91D复合材料的理论密度、实验密度以及孔隙率

Material[border:border-top:solid;border-bottom:solid;]

Vickers hardness

HV

σ0.2

MPa

σb

MPa

Failure strain

%

AZ91D68.11431752.1
0.3%GNPs/AZ91D78.51542053.0
0.6%GNPs/AZ91D92.31652453.9
0.9%GNPs/AZ91D83.11512212.5
表2  触变注射成形后AZ91D镁合金及GNPs/AZ91D复合材料的力学性能
图10  触变注射成形后AZ91D镁合金及GNPs/AZ91D复合材料的拉伸曲线
[1] KandemirS. Development of graphene nanoplatelet-reinforced AZ91 magnesium alloy by solidification processing[J]. J. Mater. Eng. Perform., 2018, 27: 3014
[2] FengY, ChenC, PengC Q, et al. Research progress on magnesium matrix composites[J].Chin. J. Nonferrous Met., 2017, 27: 2385
[2] (冯 艳, 陈 超, 彭超群等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27: 2385)
[3] NovoselovK S, GeimA, MorozovS V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[4] LiM X, ZhaoY H, ChenL W, et al. Research progress on preparation technology of graphene-reinforced aluminum matrix composites[J]. Mater. Res. Express, 2019, 6: 032002
[5] LeopoldC, LiebigW V, WittichH, et al. Size effect of graphene nanoparticle modified epoxy matrix[J]. Compos. Sci. Technol., 2016, 134: 217
[6] LiD S, WuW Z, QinQ H, et al. Microstructure and mechanical properties of graphene/Al composites[J].Chin. J. Nonferrous Met., 2015, 25: 1498
[6] (李多生, 吴文政, QinQ H, et al. 石墨烯/Al复合材料的微观结构及力学性能 [J]. 中国有色金属学报, 2015, 25: 1498)
[7] HuZ, TongG, LinD, et al. Graphene-reinforced metal matrix nanocomposites—A review[J]. Mater. Sci. Technol., 2016, 32: 930
[8] KumarH G P, XaviorM A. Graphene reinforced metal matrix composite (GRMMC): A review[J]. Proc. Eng., 2014, 97: 1033
[9] ChenL Y, KonishiH, FehrenbacherA, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J]. Scr. Mater., 2012, 67: 29
[10] WuL Q, WuR Z, HouL G, et al. Microstructure, mechanical properties and wear performance of AZ31 matrix composites reinforced by graphene nanoplatelets (GNPs)[J]. J. Alloys Compd., 2018, 750: 530
[11] RashadM, PanF S, ZhangJ Y, et al. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy[J]. J. Alloys Compd., 2015, 646: 223
[12] DuX, DuW B, WangZ H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2018, A711: 633
[13] RashadM, PanF S, TangA T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. J. Alloys Compd., 2014, 603: 111
[14] HaH W, ChoudhuryA, KamalT, et al. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites[J]. ACS Appl. Mater. Interfaces, 2012, 4: 4623
[15] RashadM, PanF S, AsifM. Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets[J]. Mater. Sci. Eng., 2016, A649: 263
[16] CuiX P. The research on the microstructure and process of thixomolding AZ91D magnesium Alloy[D]. Changchun: Jilin University, 2006
[16] (崔晓鹏. AZ91D镁合金半固态触变注射组织与工艺研究 [D]. 长春: 吉林大学, 2006)
[17] PatelH A, ChenD L, BholeS D, et al. Microstructure and tensile properties of thixomolded magnesium alloys[J]. J. Alloys Compd., 2010, 496: 140
[18] ChengP, ZhaoY H, LuR P, et al. Effect of Ti addition on the microstructure and mechanical properties of cast Mg-Gd-Y-Zn alloys[J]. Mater. Sci. Eng., 2017, A708: 482
[19] MansoorB, MukherjeeS, GhoshA, et al. Microstructure and porosity in thixomolded Mg alloys and minimizing adverse effects on formability[J]. Mater. Sci. Eng., 2009, A512: 10
[20] ChenL W, ZhaoY H, YanF, et al. Statistical investigations of serpentine channel pouring process parameters on semi-solid ZL101 aluminum alloy slurry using response surface methodology[J]. J. Alloys Compd., 2017, 725: 673
[21] HashimotoY, HinoM, MitookaY, et al. Effects of fixing carbon nanoparticle to AZ91D magnesium alloy chip surface on thixomold forming[J]. Mater. Trans., 2016, 57: 183
[22] ChenL W, ZhaoY H, HouH, et al. Development of AZ91D magnesium alloy-graphene nanoplatelets composites using thixomolding process[J]. J. Alloys Compd., 2019, 778: 359
[23] RashadM, PanF S, TangA T, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Prog. Nat. Sci., 2014, 24: 101
[24] ArsenaultR J, ShiN. Dislocation generation due to differences between the coefficients of thermal expansion[J]. Mater. Sci. Eng., 1986, 81: 175
[25] YuanQ H, ZhouG H, LiaoL, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127: 177
[26] LiM, GaoH Y, LiangJ M, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites[J]. Mater. Charact., 2018, 140: 172
[27] RashadM, PanF S, TangA T, et al. Powder metallurgy of Mg-1%Al-1% Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. J. Ind. Eng. Chem., 2014, 20: 4250
[28] XiangS L, GuptaM, WangX J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets[J]. Composites, 2017, 100A: 183
[29] SeretisG V, KouzilosG, PolyzouA K, et al. Effect of graphene nanoplatelets fillers on mechanical properties and microstructure of cast aluminum matrix composites[J]. Nano Hybr. Compos., 2017, 15: 26
[30] QuX N. Study on microstructure and properties of AZ31 magnesium matrix composites reinforced by carbon nanotubes and graphenes[D]. Chengdu: Southwest Jiaotong University, 2017
[30] (屈晓妮. 碳纳米管和石墨烯增强AZ31镁基复合材料的组织和性能研究 [D]. 成都: 西南交通大学, 2017)
[31] NietoA, BishtA, LahiriD, et al. Graphene reinforced metal and ceramic matrix composites: A review[J]. Int. Mater. Rev., 2016, 62: 241
[32] RafieeM A, RafieeJ, WangZ, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3: 3884
[33] XiangS L, WangX J, GuptaM, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Sci. Rep., 2016, 6: 38824
[34] LuoH. Research on the microstructure and properties of graphene nanoplatelets reinforced aluminum matrix composites[D]. Harbin: Harbin Institute of Technology, 2015
[34] (罗 昊. 石墨烯微片增强铝基复合材料组织与性能的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015)
[1] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[2] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[3] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[4] 王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. TiZr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
[5] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[6] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[7] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[8] 张茂龙, 鲁艳红, 陈胜虎, 戎利建, 陆皓. 不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响[J]. 金属学报, 2020, 56(8): 1057-1066.
[9] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[10] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[11] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[12] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[13] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[14] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[15] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.