Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1451-1460    DOI: 10.11900/0412.1961.2018.00072
  本期目录 | 过刊浏览 |
573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理
毛轶哲, 李建国(), 封蕾
清华大学材料学院先进材料教育部重点实验室 北京 100084
Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression
Yizhe MAO, Jianguo LI(), Lei FENG
Key Laboratory of Advanced Materials, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(8084 KB)   HTML
摘要: 

对高镁Al-10Mg合金分别做了固溶与时效处理,固溶工艺为673 K、24 h,固溶后的高温时效工艺为573 K、24 h,并对固溶及时效态试样分别进行了两道次压缩实验。通过OM、XRD、EPMA、EBSD等分析表征手段,研究了时效析出的β相对高镁Al-10Mg合金热变形过程中的力学性能及微观组织演变的影响。结果表明,时效处理后晶粒内部析出了均匀分布的β相,两道次压缩实验后时效态试样的应力-应变曲线始终处于固溶态试样曲线的下方。第一道次压缩实验中时效态试样的硬化率低于固溶态试样的硬化率,在回复过程中固溶Mg原子对形变强化起主要作用;第二道次压缩实验中时效态试样的硬化率高于固溶态试样的硬化率,时效态试样内部的位错累积更显著并且更早地出现了再结晶软化。时效态试样压缩组织内残余了更多的形变储能,使β相激发出更多的小角度晶界,进而将变形晶粒基体切割成若干区块,促进了再结晶形核,从而细化了再结晶晶粒。时效态压缩组织各区块的Schmid因子分布更均匀,在后续变形过程中能承受更多的塑性变形。再结晶形核不再局限于晶界凸出(bulging)形核,再结晶晶粒不再具备典型的再结晶织构特性,各向异性被弱化。β相阻碍了位错的滑移,将部分变形储能累积在沉淀相周围的小角度晶界处,减少了滑移到变形晶粒晶界处的位错数量,从而减缓了变形晶粒晶格的旋转,使变形晶粒含有{001}和{101} 2种面织构组分。

关键词 Al-10Mg合金时效处理β(Al3Mg2)相;小角度晶界晶粒细化组织演变    
Abstract

Al-Mg series alloy plays an important role in offshore manufacturing, transportation and aerospace industries for its high strength-to-weight ratio, high corrosion resistance and good welding performance. For high magnesium Al-Mg alloy, β phase always acts as a restraint condition to the whole thermal mechanical processing (TMP) procedure. Its positive effect is still unclear. In this work, the effect of coarse β(Al3Mg2) phase of Al-10Mg alloy annealed at 573 K for 24 h and applied double passes uniaxial compression on microstructure evolution was studied by using OM, XRD, EPMA and EBSD. The result shows that discrete coarse β phase was precipitated in the interior of grains after 573 K and 24 h annealing treatment. The true stress-true strain curve of annealed sample was lower than that of solution treated one. Hardening rate of annealed sample was lower in first compression pass, and conversely higher than that of solution treated one in the second pass. Solution Mg atoms play an important role in strain hardening during dynamic recovery. Dislocation slipping was obstructed by coarse β phase, and then low angle boundary (LAB) was stimulated near coarse β phase. Not just bulging nucleation mechanism working, dynamic recrystallization nucleation was stimulated and microstructure was refined. Since part of deformation-stored energy was lured away by LAB, lattice rotation of deformed grains were weakened possessing {001} and {101} textures simultaneously. Schmid factors of three blocks with different lattice orientations were calculated, which suggested that alloy can load more plastic deformation after annealing treatment. Texture of recrystallized new grains was weakened at the same time. Microstructure anisotropy could be controlled by coarse β phase in TMP.

Key wordsAl-10Mg alloy    annealing treatment    β(Al3Mg2) phase;    low angle boundary    grain refinement    microstructure evolution
收稿日期: 2018-03-05     
ZTFLH:  TG146.2  
基金资助:国际科技合作项目No.2015DFR50470
作者简介:

作者简介 毛轶哲,女,1992年生,硕士

引用本文:

毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression. Acta Metall Sin, 2018, 54(10): 1451-1460.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00072      或      https://www.ams.org.cn/CN/Y2018/V54/I10/1451

图1  铸态及573 K、24 h时效态Al-10Mg合金的微观组织、EPMA面扫描及固溶和时效态Al-10Mg合金的XRD谱
图2  固溶态及时效态Al-10Mg合金试样两道次压缩的真应力-应变曲线及硬化率曲线
图3  固溶态及时效态Al-10Mg合金压缩组织及统计结果
图4  含β相及小角度晶界的微观组织(图3的局部放大)及区块取向
图5  固溶及时效态Al-10Mg合金试样压缩组织的取向反极图
图6  区块1#、7#和13#取向的Schmid因子分布
No. Slip system 1# 7# 13#
1 (111)[01] 0.0445 0.0726 0.2449
2 (111)[10] 0.2449 0.0280 0.0816
3 (111)[10] 0.2895 0.0445 0.1633
4 (11)[110] 0.3637 0.0759 0.0816
5 (11)[101] 0.4676 0.0693 0.0816
6 (11)[01] 0.1039 0.1452 0.2449
7 (11)[011] 0.1781 0.1138 0.2449
8 (11)[10] 0.4899 0.3225 0.2449
9 (11)[110] 0.3118 0.4363 0.4899
10 (11)[011] 0.1188 0.1039 0.2449
11 (11)[10] 0.3860 0.4676 0.4899
12 (11)[101] 0.2672 0.3637 0.2449
表1  图4中区块1#、7#和13#取向的Schmid因子
[1] Wang Y G.Study of formability properties of 5182 aluminum alloy automobile plate [D]. Chongqing: Chongqing University, 2016(王游根. 5182铝合金汽车板成形性能的研究 [D]. 重庆: 重庆大学, 2016)
[2] Bingay C P.Microstructural response of aluminum-magnesium alloys to thermomechanical processing [D]. Monterey: Naval Postgraduate School, 1977
[3] Kuhnert G J Jr. The influence of warm rolling parameters (temperature and reheating time between passes) on the superplastic response of Al-Mg alloys [D]. Monterey: Naval Postgraduate School, 1988
[4] Buckley J F.The deformation characteristics and microstructural dynamics of an Al-10Mg-0.1Zr alloy [D]. Monterey: Naval Postgraduate School, 1992
[5] Liu J, Kolak M. A new paradigm in the design of Aluminum alloys for aerospace applications [J]. Mater. Sci. Forum, 2000, 331-337: 127
[6] Yi G S, Littrell K C, Poplawsky J D, et al.Characterization of the effects of different tempers and aging temperatures on the precipitation behavior of Al-Mg (5.25 at.%)-Mn alloys[J]. Mater. Des., 2017, 118: 22
[7] Fakhraei O, Emamy M.Effects of Zr and B on the structure and tensile properties of Al-20%Mg[J]. Mater. Des., 2014, 56: 557
[8] Liu Z X, Li Z J, Wang M X, et al. Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys [J]. Mater. Sci. Eng., 2008, A483-484: 120
[9] Chibane N, Ait-Amokhtar H, Fressengeas C.On the strain rate dependence of the critical strain for plastic instabilities in Al-Mg alloys[J]. Scr. Mater., 2017, 130: 252
[10] Bernard C, Co?r J, Laurent H, et al.Influence of portevin-le chatelier effect on shear strain path reversal in an Al-Mg alloy at room and high temperatures[J]. Exp. Mech., 2017, 57: 405
[11] Yi G S, Zeng W Z, Poplawsky J D, et al.Characterizing and modeling the precipitation of Mg-rich phases in Al 5xxx alloys aged at low temperatures[J]. J. Mater. Sci. Technol., 2017, 33: 991
[12] D'Antuono D S, Gaies J, Golumbfskie W, et al. Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5xxx series aluminum alloys[J]. Acta Mater., 2017, 123: 264
[13] Zhu Y K, Cullen D A, Kar S, et al.Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging[J]. Metall. Mater. Trans., 2012, 43A: 4933
[14] EDAX. OIM Analysis 7.3 Manual, 2013
[15] Zhang L G.Research on static recrystallization behavior and simulation of microstructure evolution for 316LN [D]. Qinhuangdao: Yanshan University, 2014(张丽舸. 316LN静态再结晶行为及其组织演变模拟研究 [D]. 秦皇岛: 燕山大学, 2014)
[16] He Y.Simulation of dynamic recrystallization process of metallic materials by cellular automata method [D]. Dalian: Dalian University of Technology, 2005(何燕. 金属材料动态再结晶过程的元胞自动机法数值模拟 [D]. 大连: 大连理工大学, 2005)
[17] Kocks U F, Mecking H.Physics and phenomenology of strain hardening: the FCC case[J]. Prog. Mater. Sci., 2003, 48: 171
[18] Yan L M.Study on the working-hardening of magnesium alloy [D]. Wuhan: Wuhan University of Science and Technology, 2012(闫立明. 镁合金加工硬化的研究 [D]. 武汉: 武汉科技大学, 2012)
[19] Mao W M.Crystallographic Textures and Anisotropies of Metal Materials [M]. Beijing: Science Press, 2002: 39(毛卫民. 金属材料的晶体学织构与各向异性 [M]. 北京: 科学出版社, 2002: 39)
[20] Engler O, Randle V.Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping [M]. 2nd Ed., Boca Raton, FL: CRC Press, 2010: 75
[21] Wang F.In situ EBSD studies of the plastic deformation within grain/subgrain of aluminum alloys [D]. Beijing: Beijing University of Technology, 2012(王峰. 铝合金单个晶粒/亚晶粒内塑性变形机制的原位EBSD研究 [D]. 北京: 北京工业大学, 2012)
[22] Rofman O V, Bate P S, Brough I, et al.Study of dynamic grain growth by electron microscopy and EBSD[J]. J. Microsc., 2009, 233: 432
[23] Xu W, Ferry M, Cairney J M, et al.Three-dimensional investigation of particle-stimulated nucleation in a nickel alloy[J]. Acta Mater., 2007, 55: 5157
[24] Humphreys F J, Bate P S.Measuring the alignment of low-angle boundaries formed during deformation[J]. Acta Mater., 2006, 54: 817
[25] Ferry M, Humphreys F J.The deformation and recrystallization of particle-containing {011}<100> aluminium crystals[J]. Acta Mater., 1996, 44: 3089
[26] Humphreys F J, Ardakani M G.The deformation of particle-containing aluminium single crystals[J]. Acta Metall. Mater., 1994, 42: 749
[27] Miura H, Aoyama H, Sakai T.Effect of grain-boundary misorientation on dynamic recrystallization of Cu-Si bicrystals[J]. J. Jpn. Inst. Met., 1994, 58: 267
[28] Sakai T, Belyakov A, Kaibyshev R, et al.Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Prog. Mater. Sci, 2014, 60: 130
[29] Ma P C.Effect of microstructure and texture on the formability and serrated deformation behavior of 5xxx series aluminum alloy [D]. Beijing: University of Science and Technology Beijing, 2015(马鹏程. 5xxx铝合金板材的组织和织构对其成形性和锯齿屈服行为的影响 [D]. 北京: 北京科技大学, 2015)
[30] Yao Z Y.Quantitative investigation of microstructural and texture evolution during cold rolling AA3104 and AA1050 aluminum alloys [D]. Beijing: Tsinghua University, 2009(姚宗勇. 冷轧3104和1050铝合金微观组织及织构变化的定量研究 [D]. 北京: 清华大学, 2009)
[31] Wei Y L.Research of the dislocation structures of deformed FCC metals [D]. Beijing: Tsinghua University, 2011(魏绎郦. 面心立方金属中形变位错结构的研究 [D]. 北京: 清华大学, 2011)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[4] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[5] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[6] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[7] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[8] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[9] 谢光, 张少华, 郑伟, 张功, 申健, 卢玉章, 郝红全, 王莉, 楼琅洪, 张健. 大尺寸单晶叶片中小角度晶界的形成与演化[J]. 金属学报, 2019, 55(12): 1527-1536.
[10] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[11] 王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
[12] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[13] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[14] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[15] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.