Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1451-1460    DOI: 10.11900/0412.1961.2018.00072
  本期目录 | 过刊浏览 |
573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理
毛轶哲, 李建国(), 封蕾
清华大学材料学院先进材料教育部重点实验室 北京 100084
Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression
Yizhe MAO, Jianguo LI(), Lei FENG
Key Laboratory of Advanced Materials, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China
引用本文:

毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. Acta Metall Sin, 2018, 54(10): 1451-1460.

全文: PDF(8084 KB)   HTML
摘要: 

对高镁Al-10Mg合金分别做了固溶与时效处理,固溶工艺为673 K、24 h,固溶后的高温时效工艺为573 K、24 h,并对固溶及时效态试样分别进行了两道次压缩实验。通过OM、XRD、EPMA、EBSD等分析表征手段,研究了时效析出的β相对高镁Al-10Mg合金热变形过程中的力学性能及微观组织演变的影响。结果表明,时效处理后晶粒内部析出了均匀分布的β相,两道次压缩实验后时效态试样的应力-应变曲线始终处于固溶态试样曲线的下方。第一道次压缩实验中时效态试样的硬化率低于固溶态试样的硬化率,在回复过程中固溶Mg原子对形变强化起主要作用;第二道次压缩实验中时效态试样的硬化率高于固溶态试样的硬化率,时效态试样内部的位错累积更显著并且更早地出现了再结晶软化。时效态试样压缩组织内残余了更多的形变储能,使β相激发出更多的小角度晶界,进而将变形晶粒基体切割成若干区块,促进了再结晶形核,从而细化了再结晶晶粒。时效态压缩组织各区块的Schmid因子分布更均匀,在后续变形过程中能承受更多的塑性变形。再结晶形核不再局限于晶界凸出(bulging)形核,再结晶晶粒不再具备典型的再结晶织构特性,各向异性被弱化。β相阻碍了位错的滑移,将部分变形储能累积在沉淀相周围的小角度晶界处,减少了滑移到变形晶粒晶界处的位错数量,从而减缓了变形晶粒晶格的旋转,使变形晶粒含有{001}和{101} 2种面织构组分。

关键词 Al-10Mg合金时效处理β(Al3Mg2)相;小角度晶界晶粒细化组织演变    
Abstract

Al-Mg series alloy plays an important role in offshore manufacturing, transportation and aerospace industries for its high strength-to-weight ratio, high corrosion resistance and good welding performance. For high magnesium Al-Mg alloy, β phase always acts as a restraint condition to the whole thermal mechanical processing (TMP) procedure. Its positive effect is still unclear. In this work, the effect of coarse β(Al3Mg2) phase of Al-10Mg alloy annealed at 573 K for 24 h and applied double passes uniaxial compression on microstructure evolution was studied by using OM, XRD, EPMA and EBSD. The result shows that discrete coarse β phase was precipitated in the interior of grains after 573 K and 24 h annealing treatment. The true stress-true strain curve of annealed sample was lower than that of solution treated one. Hardening rate of annealed sample was lower in first compression pass, and conversely higher than that of solution treated one in the second pass. Solution Mg atoms play an important role in strain hardening during dynamic recovery. Dislocation slipping was obstructed by coarse β phase, and then low angle boundary (LAB) was stimulated near coarse β phase. Not just bulging nucleation mechanism working, dynamic recrystallization nucleation was stimulated and microstructure was refined. Since part of deformation-stored energy was lured away by LAB, lattice rotation of deformed grains were weakened possessing {001} and {101} textures simultaneously. Schmid factors of three blocks with different lattice orientations were calculated, which suggested that alloy can load more plastic deformation after annealing treatment. Texture of recrystallized new grains was weakened at the same time. Microstructure anisotropy could be controlled by coarse β phase in TMP.

Key wordsAl-10Mg alloy    annealing treatment    β(Al3Mg2) phase;    low angle boundary    grain refinement    microstructure evolution
收稿日期: 2018-03-05     
ZTFLH:  TG146.2  
基金资助:国际科技合作项目No.2015DFR50470
作者简介:

作者简介 毛轶哲,女,1992年生,硕士

图1  铸态及573 K、24 h时效态Al-10Mg合金的微观组织、EPMA面扫描及固溶和时效态Al-10Mg合金的XRD谱
图2  固溶态及时效态Al-10Mg合金试样两道次压缩的真应力-应变曲线及硬化率曲线
图3  固溶态及时效态Al-10Mg合金压缩组织及统计结果
图4  含β相及小角度晶界的微观组织(图3的局部放大)及区块取向
图5  固溶及时效态Al-10Mg合金试样压缩组织的取向反极图
图6  区块1#、7#和13#取向的Schmid因子分布
No. Slip system 1# 7# 13#
1 (111)[01] 0.0445 0.0726 0.2449
2 (111)[10] 0.2449 0.0280 0.0816
3 (111)[10] 0.2895 0.0445 0.1633
4 (11)[110] 0.3637 0.0759 0.0816
5 (11)[101] 0.4676 0.0693 0.0816
6 (11)[01] 0.1039 0.1452 0.2449
7 (11)[011] 0.1781 0.1138 0.2449
8 (11)[10] 0.4899 0.3225 0.2449
9 (11)[110] 0.3118 0.4363 0.4899
10 (11)[011] 0.1188 0.1039 0.2449
11 (11)[10] 0.3860 0.4676 0.4899
12 (11)[101] 0.2672 0.3637 0.2449
表1  图4中区块1#、7#和13#取向的Schmid因子
[1] Wang Y G.Study of formability properties of 5182 aluminum alloy automobile plate [D]. Chongqing: Chongqing University, 2016(王游根. 5182铝合金汽车板成形性能的研究 [D]. 重庆: 重庆大学, 2016)
[2] Bingay C P.Microstructural response of aluminum-magnesium alloys to thermomechanical processing [D]. Monterey: Naval Postgraduate School, 1977
[3] Kuhnert G J Jr. The influence of warm rolling parameters (temperature and reheating time between passes) on the superplastic response of Al-Mg alloys [D]. Monterey: Naval Postgraduate School, 1988
[4] Buckley J F.The deformation characteristics and microstructural dynamics of an Al-10Mg-0.1Zr alloy [D]. Monterey: Naval Postgraduate School, 1992
[5] Liu J, Kolak M. A new paradigm in the design of Aluminum alloys for aerospace applications [J]. Mater. Sci. Forum, 2000, 331-337: 127
[6] Yi G S, Littrell K C, Poplawsky J D, et al.Characterization of the effects of different tempers and aging temperatures on the precipitation behavior of Al-Mg (5.25 at.%)-Mn alloys[J]. Mater. Des., 2017, 118: 22
[7] Fakhraei O, Emamy M.Effects of Zr and B on the structure and tensile properties of Al-20%Mg[J]. Mater. Des., 2014, 56: 557
[8] Liu Z X, Li Z J, Wang M X, et al. Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys [J]. Mater. Sci. Eng., 2008, A483-484: 120
[9] Chibane N, Ait-Amokhtar H, Fressengeas C.On the strain rate dependence of the critical strain for plastic instabilities in Al-Mg alloys[J]. Scr. Mater., 2017, 130: 252
[10] Bernard C, Co?r J, Laurent H, et al.Influence of portevin-le chatelier effect on shear strain path reversal in an Al-Mg alloy at room and high temperatures[J]. Exp. Mech., 2017, 57: 405
[11] Yi G S, Zeng W Z, Poplawsky J D, et al.Characterizing and modeling the precipitation of Mg-rich phases in Al 5xxx alloys aged at low temperatures[J]. J. Mater. Sci. Technol., 2017, 33: 991
[12] D'Antuono D S, Gaies J, Golumbfskie W, et al. Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5xxx series aluminum alloys[J]. Acta Mater., 2017, 123: 264
[13] Zhu Y K, Cullen D A, Kar S, et al.Evaluation of Al3Mg2 precipitates and Mn-rich phase in aluminum-magnesium alloy based on scanning transmission electron microscopy imaging[J]. Metall. Mater. Trans., 2012, 43A: 4933
[14] EDAX. OIM Analysis 7.3 Manual, 2013
[15] Zhang L G.Research on static recrystallization behavior and simulation of microstructure evolution for 316LN [D]. Qinhuangdao: Yanshan University, 2014(张丽舸. 316LN静态再结晶行为及其组织演变模拟研究 [D]. 秦皇岛: 燕山大学, 2014)
[16] He Y.Simulation of dynamic recrystallization process of metallic materials by cellular automata method [D]. Dalian: Dalian University of Technology, 2005(何燕. 金属材料动态再结晶过程的元胞自动机法数值模拟 [D]. 大连: 大连理工大学, 2005)
[17] Kocks U F, Mecking H.Physics and phenomenology of strain hardening: the FCC case[J]. Prog. Mater. Sci., 2003, 48: 171
[18] Yan L M.Study on the working-hardening of magnesium alloy [D]. Wuhan: Wuhan University of Science and Technology, 2012(闫立明. 镁合金加工硬化的研究 [D]. 武汉: 武汉科技大学, 2012)
[19] Mao W M.Crystallographic Textures and Anisotropies of Metal Materials [M]. Beijing: Science Press, 2002: 39(毛卫民. 金属材料的晶体学织构与各向异性 [M]. 北京: 科学出版社, 2002: 39)
[20] Engler O, Randle V.Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping [M]. 2nd Ed., Boca Raton, FL: CRC Press, 2010: 75
[21] Wang F.In situ EBSD studies of the plastic deformation within grain/subgrain of aluminum alloys [D]. Beijing: Beijing University of Technology, 2012(王峰. 铝合金单个晶粒/亚晶粒内塑性变形机制的原位EBSD研究 [D]. 北京: 北京工业大学, 2012)
[22] Rofman O V, Bate P S, Brough I, et al.Study of dynamic grain growth by electron microscopy and EBSD[J]. J. Microsc., 2009, 233: 432
[23] Xu W, Ferry M, Cairney J M, et al.Three-dimensional investigation of particle-stimulated nucleation in a nickel alloy[J]. Acta Mater., 2007, 55: 5157
[24] Humphreys F J, Bate P S.Measuring the alignment of low-angle boundaries formed during deformation[J]. Acta Mater., 2006, 54: 817
[25] Ferry M, Humphreys F J.The deformation and recrystallization of particle-containing {011}<100> aluminium crystals[J]. Acta Mater., 1996, 44: 3089
[26] Humphreys F J, Ardakani M G.The deformation of particle-containing aluminium single crystals[J]. Acta Metall. Mater., 1994, 42: 749
[27] Miura H, Aoyama H, Sakai T.Effect of grain-boundary misorientation on dynamic recrystallization of Cu-Si bicrystals[J]. J. Jpn. Inst. Met., 1994, 58: 267
[28] Sakai T, Belyakov A, Kaibyshev R, et al.Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Prog. Mater. Sci, 2014, 60: 130
[29] Ma P C.Effect of microstructure and texture on the formability and serrated deformation behavior of 5xxx series aluminum alloy [D]. Beijing: University of Science and Technology Beijing, 2015(马鹏程. 5xxx铝合金板材的组织和织构对其成形性和锯齿屈服行为的影响 [D]. 北京: 北京科技大学, 2015)
[30] Yao Z Y.Quantitative investigation of microstructural and texture evolution during cold rolling AA3104 and AA1050 aluminum alloys [D]. Beijing: Tsinghua University, 2009(姚宗勇. 冷轧3104和1050铝合金微观组织及织构变化的定量研究 [D]. 北京: 清华大学, 2009)
[31] Wei Y L.Research of the dislocation structures of deformed FCC metals [D]. Beijing: Tsinghua University, 2011(魏绎郦. 面心立方金属中形变位错结构的研究 [D]. 北京: 清华大学, 2011)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[6] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[9] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[10] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[12] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[13] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[14] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[15] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.