|
|
NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究 |
韦昭召1,2, 马骁2( ), 张新平2 |
1 五邑大学机电工程学院 江门 529020 2 华南理工大学材料科学与工程学院 广州 510640 |
|
Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy |
Zhaozhao WEI1,2, Xiao MA2( ), Xinping ZHANG2 |
1 School of Mechanical and Electrical Engineering, Wuyi University, Jiangmen 529020, China 2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China |
引用本文:
韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
Zhaozhao WEI,
Xiao MA,
Xinping ZHANG.
Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. Acta Metall Sin, 2018, 54(10): 1461-1470.
[1] | Hummel F A.Thermal expansion properties of some synthetic lithia minerals[J]. J. Am. Ceram. Soc., 1951, 34: 235 | [2] | Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3-1050 Kelvin in ZrW2O8[J]. Science, 1996, 272: 90 | [3] | Mavoori H, Jin S.Low-thermal-expansion copper composites via negative CTE metallic elements[J]. JOM, 1998, 50(6): 70 | [4] | Zheng Y J, Li J T, Cui L S. Martensitic transformations and thermal expansion behaviors of structural heterogeneous NiTi alloys [J]. Mater. Sci. Eng., 2006, A438-440: 567 | [5] | Li J F, Zheng Z Q, Li X W, et al.Effect of compressive stress aging on transformation strain and microstructure of Ni-rich TiNi alloy[J]. Mater. Sci. Eng., 2009, A523: 207 | [6] | Ahadi A, Matsushita Y, Sawaguchi T, et al.Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy[J]. Acta Mater., 2017, 124: 79 | [7] | Zhao Z X, Ma X, Cao S S, et al.Anisotropic negative thermal expansion behavior of the as-fabricated Ti-rich and equiatomic Ti-Ni alloys induced by preferential grain orientation[J]. Shap. Mem. Superelasticity, 2018, 4: 218 | [8] | Zhao Z X, Ma X, Zeng C Y, et al.Reversible negative thermal expansion response and phase transformation behavior of a Ti-rich Ti54Ni46 alloy prepared by rapid solidification [A]. Proceedings of the International Conference on Martensitic Transformations[C]. Chicago: Springer, 2018: 189 | [9] | Wayman C M.Introduction to the Crystallography of Martensitic Transformations[M]. New York: MacMillan, 1964: 1 | [10] | Ball J M, James R D.Fine phase mixtures as minimizers of energy[J]. Arch. Ration. Mech. Anal., 1987, 100: 13 | [11] | Pond R C, Celotto S, Hirth J P.A comparison of the phenomenological theory of martensitic transformations with a model based on interfacial defects[J]. Acta Mater., 2003, 51: 5385 | [12] | Pond R C, Ma X, Chai Y W, et al.Topological modelling of martensitic transformations[J]. Disloc. Solids, 2007, 13: 225 | [13] | Ma X, Pond R C.Martensitic interfaces and transformation crystallography in Pu-Ga alloys[J]. J. Mater. Sci., 2011, 46: 4236 | [14] | Ma X, Pond R C. Defect modelling of martensitic interfaces in plate martensite [J]. Mater. Sci. Eng., 2008, A481-482: 404 | [15] | Wei Z Z, Ma X, Zhang X P.Study on the dislocation structure of interphase interface and martensite transformation crystallography in Ni2MnGa alloy[J]. Acta Metall. Sin., 2013, 49: 187(韦昭召, 马骁, 张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49: 187) | [16] | Qiu D, Zhang W Z.Research progress in precipitation crystallography models[J]. Acta Metall. Sin., 2006, 42: 341(邱冬, 张文征. 沉淀相变晶体学模型的研究进展[J]. 金属学报, 2006, 42: 341) | [17] | Monroe J A, Gehring D, Karaman I, et al.Tailored thermal expansion alloys[J]. Acta Mater., 2016, 102: 333 | [18] | Li Y Y, Cao S S, Ma X, et al.Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy[J]. Mater. Sci. Eng., 2017, A705: 273 | [19] | Wei Z Z, Ma X, Zhang X P.A criterion for determining the optimum value of twist in the topological model[J]. Philos. Mag. Lett., 2014, 94: 288 | [20] | Prokoshkin S D, Korotitskiy A V, Brailovski V, et al.On the lattice parameters of phases in binary Ti-Ni shape memory alloys[J]. Acta Mater., 2004, 52: 4479 | [21] | Bilby B A, Crocker A G.The theory of the crystallography of deformation twinning[J]. Proc. Roy. Soc. London, 1965, 288A: 240 | [22] | Ostuka K, Ren X.Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Prog. Mater. Sci., 2005, 50: 511 | [23] | Knowles K M, Smith D A.The crystallography of the martensitic transformation in equiatomic nickel-titanium[J]. Acta Metall., 1981, 29: 101 | [24] | Knowles K M.A high-resolution electron microscope study of nickel-titanium martensite[J]. Philos. Mag., 1982, 45A: 357 | [25] | Matsumoto O, Miyazaki S, Otsuka K, et al.Crystallography of martensitic transformation in Ti-Ni single crystals[J]. Acta Metall., 1987, 35: 2137 | [26] | Nishida M, Ohgi H, Itai I, et al.Electron microscopy studies of twin morphologies in B19' martensite in the Ti-Ni shape memory alloy[J]. Acta Metall. Mater., 1995, 43: 1219 | [27] | Hirth J P, Lothe J.Theory of Dislocations[M]. New York: McGraw-Hill, 1982: 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|