Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1368-1376    DOI: 10.11900/0412.1961.2018.00119
  本期目录 | 过刊浏览 |
V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制
李晓林1(), 崔阳1, 肖宝亮1, 张大伟1, 金钊2, 程政2
1 首钢集团有限公司技术研究院绿色可循环钢铁流程北京市重点实验室 北京 100043
2 首钢京唐钢铁联合有限责任公司 唐山 063200
Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel
Xiaolin LI1(), Yang CUI1, Baoliang XIAO1, Dawei ZHANG1, Zhao JIN2, Zheng CHENG2
1 Beijing Key Laboratory of Green Recyclable Process for Iron & steel Production Technology, Research Institute of Technology, Shougang Group Co. Ltd., Beijing 100043, China;
2 Shougang Jingtang Steel Company, Tangshan 063200, China
引用本文:

李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
Xiaolin LI, Yang CUI, Baoliang XIAO, Dawei ZHANG, Zhao JIN, Zheng CHENG. Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel[J]. Acta Metall Sin, 2018, 54(10): 1368-1376.

全文: PDF(6976 KB)   HTML
摘要: 

利用SEM、TEM以及三维原子探针(3DAP)等分析方法,研究了V-N微合金钢在线快速感应回火过程中,不同保温时间对力学性能以及析出强化机理的影响。结果表明,未经回火组织为粒状贝氏体;经过600 ℃回火后,组织为粒状贝氏体+铁素体。试样在600 ℃回火,保温300 s,硬度和屈服强度出现峰值,分别为330.45 HV和815 MPa,与未回火试样相比,屈服强度增加了173 MPa。屈服强度的增加主要依靠V或者VN原子团簇,团簇中V、N原子的分布近似单原子层,类似析出相的GP区,其内部总的原子数量在20~100个之间,这些细小的纳米团簇与位错有较强的相互作用,与V(C, N)析出相相比,V或VN团簇具有更佳的强化效果。

关键词 三维原子探针(3DAP)在线快速感应回火V-N微合金钢团簇强化    
Abstract

The low carbon bainite steel with high strength, excellent toughness and plasticity was widely used for pipeline, engineering machinery, ocean station vessel and other fields. The light weight of structure of construction machines puts forward higher requirements for performance of steel, which promotes the development and application of low carbon microalloyed steel. A low carbon bainite steel combined with V-N microalloyed was designed for engineering machinery, to upgrade performance by microstructure control and the refinement and dispersion control of precipitates. This steel was tempered on-line with rapid heating rate after controlled rolling and accelerated cooling process. Effects of different holding time under rapid induction tempering on precipitation strengthening mechanism and mechanical property of V-N microalloyed steel were investigated by using three dimensional atom probe (3DAP), SEM and TEM. The results showed that the main microstructures of tested steel are granular bainite before tempering, and granular bainite and ferrite appears after tempering at 600 ℃. The hardness and yield strength values reached its peak at 600 ℃ tempered for 300 s, which were 330.45 HV and 815 MPa, respectively. Compared with untempered sample, the measured strengthening increment in yield strength was 173 MPa which was due to the V-rich or VN-rich clusters with 20~100 atoms distributing similar to monoatomic layer and resembled the GP zones. These small nanoclusters have strong interaction with dislocation, and compared with V(C, N) particles, V or VN clusters have better strengthening effect.

Key wordsthree dimensional atom probe (3DAP)    on-line rapid induction tempering    V-N microalloyed steel    cluster strengthening
收稿日期: 2018-03-30     
ZTFLH:  TG142. 1  
作者简介:

作者简介 李晓林,男,1985年生,工程师,博士

图1  热轧工艺示意图
图2  试样快速加热回火至600 ℃保温时间对硬度和屈服强度的影响
图3  试样快速加热至600 ℃回火、不同保温时间的SEM像
图4  试样快速加热至 600 ℃回火、不同保温时间薄膜试样的TEM像
图5  600 ℃回火保温300 s时试样中析出相复型HRTEM像、EDS分析、单个V(C, N)析出粒子和析出相反Fourier变换后的晶格像
图6  试样快速加热至600 ℃保温300 s后C、Cr、Mo和V原子、VN团簇和V原子浓度1%时团簇的三维空间分布
图7  试样快速加热至600 ℃保温300和600 s时C、V、VN在团簇中的分布
图8  试样快速加热600 ℃回火保温300 s时试样中团簇的溶质浓度与团簇大小的关系
图9  试样快速加热600 ℃回火保温300和600 s时试样中团簇和析出的V原子数量与团簇大小的关系
[1] Gorni A A, Mei P R. Development of alternative as-rolled alloys to replace quenched and tempered steels with tensile strength in the range of 600-800 MPa [J]. J. Mater. Process. Technol., 2005, 162-163: 298
[2] Wang S C, Kao P W.The effect of alloying elements on the structure and mechanical properties of ultra low carbon bainitic steels[J]. J. Mater. Sci., 1993, 28: 5169
[3] Gorni A A, Mei P R. Austenite transformation and age hardening of HSLA-80 and ULCB steels [J]. J. Mater. Process. Technol., 2004, 155-156: 1513
[4] He X L, Shang C J, Yang S W, et al.High Performance Low Carbon Bainite Steel-Composition, Process, Organization, Performance and Application [M]. Beijing: Metallurgical Industry Press, 2008: 234(贺信莱, 尚成嘉, 杨善武等. 高性能低碳贝氏体钢——成分、工艺、组织、性能与应用 [M]. 北京: 冶金工业出版社, 2008)
[5] Yang C F, Zhang Y Q, Zu R X.Development and Application of Vanadium Nitrogen Microalloyed Steel [M]. Beijing: Iron and Steel Research Institute Press, 2002: 23(杨才福, 张永权, 祖荣祥. 钒氮微合金化钢的开发与应用 [M]. 北京: 钢铁研究总院, 2002: 23)
[6] Hayashi K, Nagao A, Matsuda Y.550 and 610 MPa class high-strength steel plates with excellent toughness for tanks and penstocks produced using carbide morphology controlling technology[J]. JFE Tech. Rep., 2008, (11): 19
[7] Nagao A, Ito T, Obinata T.Development of YP 960 and 1100 MPa class ultra high strength steel plates with excellent toughness and high resistance to delayed fracture for construction and industrial machinery[J]. JFE Tech. Rep., 2008, (11): 13
[8] Xing S Q, Chen Z Z, Ma Y L. Formation of precipitations in ultra-low carbon microalloyed steels treated by rapid tempering [J]. Adv. Mater. Res., 2011, 146-147: 635
[9] Wu H B, Tang D, Cai Q W, et al.Effect of re-heating rate on M/A islands in high deformability pipe line steel X80[J]. Trans. Mater. Heat Treat., 2012, 33(6): 100(武会宾, 唐荻, 蔡庆伍等. 重加热速率对X80级管线钢中M/A岛的影响[J]. 材料热处理学报, 2012, 33(6): 100)
[10] Zhang J, Cai Q W, Wu H B, et al.Effect of tempering temperature on micro-structure and property of 690 MPa grade ocean engineering steel under fast heating rate[J]. Acta Metall. Sin., 2013, 49: 1549(张杰, 蔡庆伍, 武会宾等. 快速加热回火对690 MPa级海洋工程用钢组织和性能的影响[J]. 金属学报, 2013, 49: 1549)
[11] Fang Y P, Xie Z J, Shang C J.Effect of induction tempering on carbide precipitation behavior and toughness of a 1000 MPa grade high strength low alloy steel[J]. Acta Metall. Sin., 2014, 50: 1413(房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50: 1413)
[12] Liu W Q, Zhou B X.China Material Engineering Canon [M]. Beijing: Chemical Industry Press, 2006: 1045(刘文庆, 周邦新. 中国材料工程大典 [M]. 北京: 化学工业出版社, 2006: 1045)
[13] Murayama M, Hono K.Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy[J]. Scr. Mater., 2001, 44: 701
[14] Cerezo A, Hirosawa S, Rozdilsky I, et al.Combined atomic-scale modelling and experimental studies of nucleation in the solid state[J]. Philos. Trans. Roy. Soc. Mathemat., Phys. Eng. Sci., 2003, 361: 463
[15] Pereloma E V, Shekhter A, Miller M K, et al.Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: Clustering, precipitation and hardening[J]. Acta Mater., 2004, 52: 5589
[16] Miller M K, Cerezo A, Hetherington M G, et al.Atom Probe Field Ion Microscopy [M]. Oxford: Oxford Science Publications, Clarendon Press, 1996: 13
[17] Blavette D, Deconihout B, Bostel A, et al.Tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale[J]. Rev. Sci. Instrum., 1993, 64: 2911
[18] Wu J, Zhang H H, Zhu S H, et al.Investigation of the precipitation process in micro-alloyed steel with three-dimensional atom probe[J]. Shanghai Met., 2009, 31(3): 36(吴静, 张恒华, 朱松鹤等. 微合金钢中析出相形核过程的三维原子探针研究[J]. 上海金属, 2009, 31(3): 36)
[19] Wang W, Zhu J J, Lin M D, et al.Study on the early-stage of copper-rich nano-clusters precipitation in model nuclear reactor pressure vessel steel[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 39(王伟, 朱娟娟, 林民东等. 核反应堆压力容器模拟钢中富Cu纳米团簇析出早期阶段的研究[J]. 北京科技大学学报, 2010, 32: 39)
[20] Xu G, Chu D F, Cai L L, et al.Investigation on the precipitation and structural evolution of Cu-rich nanophase in RPV model steel[J]. Acta Metall. Sin., 2011, 47: 905(徐刚, 楚大锋, 蔡琳玲等. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报, 2011, 47: 905)
[21] Liu Q D, Chu Y L, Wang Z M, et al.3D atom probe characterization of alloying elements partitioning in cementite of a Nb-V microalloyed steel[J]. Acta Metall. Sin., 2008, 44: 1281(刘庆冬, 褚于良, 王泽民等. Nb-V微合金钢中渗碳体周围元素分布的三维原子探针表征[J]. 金属学报, 2008, 44: 1281)
[22] Liu Q D, Deng J C, Liu W Q, et al.3D atom probe characterazation of alloy carbides in tempering martenite Ⅱ. Growth[J]. Acta Metall. Sin., 2009, 45: 1288(刘庆冬, 彭剑超, 刘文庆等. 回火马氏体中合金碳化物的3D原子探针表征Ⅱ. 长大[J]. 金属学报, 2009, 45: 1288)
[23] Yong Q L.The Second Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 175(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 175)
[24] Maugis P, Gouné M.Kinetics of vanadium carbonitride precipitation in steel: A computer model[J]. Acta Mater., 2005, 53: 3359
[25] Gladman T.Precipitation hardening in metals[J]. Mater. Sci. Technol., 1999, 15: 30
[26] Yamashita T, Okuda K, Obara T.Application of thermo-calc to the developments of high-performance steels[J]. J. Phase Equilib., 1999, 20: 231
[27] Xie K Y, Zheng T X, Cairney J M, et al.Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J]. Scr. Mater., 2012, 66: 710
[28] Karlík M, Bigot A, Jouffrey B, et al.HREM, FIM and tomographic atom probe investigation of Guinier-Preston zones in an Al-1.54 at% Cu alloy[J]. Ultramicroscopy, 2004, 98: 219
[29] Singh C V, Mateos A J, Warner D H.Atomistic simulations of dislocation-precipitate interactions emphasize importance of cross-slip[J]. Scr. Mater., 2011, 64: 398
[30] Polmear I J.Aluminium alloys-a century of age hardening[J]. Mater. Forum, 2004, 28: 1
[31] Ringer S P, Hono K, Sakurai T, et al.Cluster hardening in an aged Al-Cu-Mg alloy[J]. Scr. Mater., 1997, 36: 517
[32] Marceau R K W, Sha G, Lumley R N, et al. Evolution of Solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Mater., 2010, 58: 1795
[1] 谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
[2] 刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.
[3] 王华 史文 何燕霖 符仁钰 李麟. Mn和P在超低碳烘烤硬化钢中的分布形态及对其拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268.
[4] 迟成宇 董建新 刘文庆 谢锡善. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为[J]. 金属学报, 2010, 46(9): 1141-1146.
[5] 刘庆冬 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 II. 长大[J]. 金属学报, 2009, 45(11): 1288-1296.
[6] 刘庆冬 褚于良 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 III. 粗化[J]. 金属学报, 2009, 45(11): 1297-1302.
[7] 刘庆冬 刘文庆 王泽民 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 I. 形核[J]. 金属学报, 2009, 45(11): 1281-1287.