Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 513-522    DOI: 10.11900/0412.1961.2019.00361
  综述 本期目录 | 过刊浏览 |
滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向
俞峰1,2,陈兴品1,徐海峰2,董瀚3,翁宇庆2,曹文全2()
1.重庆大学材料科学与工程学院 重庆 400044
2.钢铁研究总院特殊钢研究所 北京 100081
3.上海大学材料科学与工程学院 上海 200444
Current Status of Metallurgical Quality and Fatigue Performance of Rolling Bearing Steel and Development Direction of High-End Bearing Steel
YU Feng1,2,CHEN Xingpin1,XU Haifeng2,DONG Han3,WENG Yuqing2,CAO Wenquan2()
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
3.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
Feng YU, Xingpin CHEN, Haifeng XU, Han DONG, Yuqing WENG, Wenquan CAO. Current Status of Metallurgical Quality and Fatigue Performance of Rolling Bearing Steel and Development Direction of High-End Bearing Steel[J]. Acta Metall Sin, 2020, 56(4): 513-522.

全文: PDF(14445 KB)   HTML
摘要: 

本文首先介绍了以GCr15为代表的第一代轴承钢、以M50和M50NiL为代表的第二代轴承钢、以Cronidur30和CSS-42L为代表的第三代轴承钢的发展历程,提出了以轻质化为特征的第四代轴承合金发展方向;通过对传统轴承钢的冶金质量和疲劳性能等归纳分析,提出了大颗粒夹杂物和碳化物细质化与均匀化的轴承钢冶金质量控制方向,揭示了轴承钢接触疲劳的夹杂物控制机制和碳化物控制的2种不同抗疲劳机制;通过对传统轴承钢GCr15的超高纯冶金质量控制工艺技术与定量表征技术的国内外最新进展,提出了超高纯与等向性的高端轴承钢冶金质量控制发展方向;通过对轴承钢GCr15和CSS-42L的基体和碳化物超细化的整体热处理技术与表面渗碳技术研究,创新研发出双细化热处理和表面超硬化热处理,从而将轴承钢GCr15的室温接触疲劳寿命提高到5倍和10倍以上。文章最后针对轴承钢的冶金质量与性能进行了检验检测技术分析,指出定量检验检测技术的应用是高性能轴承钢的重要保障。

关键词 滚动轴承钢冶金质量疲劳性能高端轴承钢发展方向    
Abstract

This paper reviewed the development history of the first generation bearing steel GCr15, the second generation bearing steels M50 and M50NiL, and the third generation bearing steels Cronidur30 and CSS-42L. The fourth generation bearing alloy characterized by light weight is put forward. Based on the analysis of metallurgical quality and fatigue properties of traditional bearing steel, the direction of metallurgical quality control of bearing steel with fine quality and homogenization of large particle inclusions and carbide was proposed, and the contact fatigue control mechanism of bearing steel and two different anti-fatigue mechanisms of carbide control were revealed. According to the latest development of quality control technology and quantitative characterization technology for traditional bearing steel GCr15, the development direction of quality control for high-end bearing steel is proposed. Through the research on the overall heat treatment technology and surface carburizing technology of superfine matrix and carbide of bearing steel GCr15 and CSS-42L steel, the double heat treatment and surface superhardening heat treatment are innovatively developed, which can increase the contact fatigue life of bearing steel GCr15 at room temperature to 5 times and more than 10 times, respectively. Finally, it is pointed out that the application of quantitative inspection and testing technology is an important guarantee for high-performance bearing steel with good metallurgical quality and high performance.

Key wordsrolling bearing steel    metallurgical quality    fatigue performance    high-end bearing steel    development direction
收稿日期: 2019-10-29     
ZTFLH:  TG142.7  
基金资助:国家重点研发计划项目(2016YFB0300101)
作者简介: 俞 峰,男,1970年生,高级工程师,博士生
GenerationCharacteristicsThe main materialThe main performance
The firstNormal temperature (≤150 ℃)GCr15High hardness, wear resistance
9Cr18(Mo)High hardness, corrosion resistance
G20CrNi2MoImpact resistance
42CrMo, G55MnBoth strength and toughness
The secondElevated temperature (≤350 ℃)8Cr4Mo4VHigh hardness, high wear resistance,
temperature resistance
G115Cr14Mo4VHigh hardness, temperature resistance,
corrosion resistance
G13Cr4Mo4Ni4VTemperature resistance, impact resistance
The thirdElevated temperature and corrosionG13Cr14Co12Mo5Ni2High strength and toughness,
resistance (350~500 ℃)high temperature resistance,
corrosion resistance
G30Cr15MoNHigh hardness, high corrosion resistant
The fourthLight weight material60NiTi, GCr15AlLow density, temperature resistance,
density ρ≤6.7 g·cm-3high corrosion resistance
表1  轴承钢主要钢种的现状与发展
图1  G13Cr14Co12Mo5Ni2钢的渗碳层组织形貌及硬度分布
图2  不锈轴承钢显微组织的SEM像
ProcessL10L50b
107 cyc107 cyc
BOF+LF+RH1.073.341.66
Argon shield atmosphere ESR3.5611.921.56
VIM+VAR5.4716.371.72
表2  不同工艺冶炼GCr15轴承钢的接触疲劳性能
图3  2种工艺下8Cr4Mo4V钢的铸态组织
图4  2种工艺下9Cr18Mo钢的碳化物
图5  新型热处理对M50轴承钢组织细化的影响
图6  GCr15轴承钢的常规淬火组织和经过双阶段热处理细化后的基体组织
图7  热处理对轴承钢GCr15接触疲劳寿命的影响
图8  非金属夹杂物检测技术
图9  利用ASPEX全自动夹杂物分析仪检测的夹杂物分布图
图10  推力片与棒球接触疲劳试验机原理图
[1] Zhong S S, Wang C S. Bearing Steel [M]. Beijing: Metallurgical Industry Press, 2000: 10
[1] 钟顺思, 王昌生. 轴承钢 [M]. 北京: 冶金工业出版社, 2000: 10
[2] Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad [J]. J. Iron Steel Res., 2016, 28(3): 1
[2] 李昭昆, 雷建中, 徐海峰等. 国内外轴承钢的现状与发展趋势 [J]. 钢铁研究学报, 2016, 28(3): 1
[3] Yang X W. Key technologies of high-end bearing manufacturing [J]. Met. Work., 2013, (16): 16
[3] 杨晓蔚. 高端轴承制造的关键技术 [J]. 金属加工(冷加工), 2013, (16): 16
[4] Tomasello C M, Maloney J L III. Aerospace bearing and gear alloys [J]. Adv. Mater. Process., 1998, 154: 58
[5] Burrier H I, Tomasello C M, Balliett S A, et al. Development of CSS-42LTM, a high performance carburizing stainless steel for high temperature aerospace applications [A]. Bearing Steels: Into the 21st Centry [C]. West Conshohocken, PA: ASTM International, 1998: 374
[6] Wang K, Yang M S, Fan G, et al. Investigation on mechanism of strength-toughening of heat and corrosion resistant bearing steel 16Cr14Co12Mo5 [J]. Iron Steel, 2011, 46(11): 75
[6] 王 康, 杨卯生, 樊 刚等. 16Cr14Co12Mo5耐热耐蚀轴承钢强韧化机制的研究 [J]. 钢铁, 2011, 46(11): 75
[7] Hou Z P, Zhang S, Zhang P, et al. High temperature creep damage behavior of a novel Cr-Co-Mo-Ni alloy [J]. J. Iron Steel Res., 2019, 31: 684
[7] 侯智鹏, 张 姝, 张 鹏等. 新型Cr-Co-Mo-Ni合金的高温蠕变损伤 [J]. 钢铁研究学报, 2019, 31: 684
[8] Trojahn W, Streit E, Chin H A, et al. Progress in bearing performance of advanced nitrogen alloyed stainless steel, Cronidur 30 [J]. Materialwiss. Werkstofftech., 1999, 30: 605
[9] El Mehtedi M, Ricci P, Drudi L, et al. Analysis of the effect of deep cryogenic treatment on the hardness and microstructure of X30 CrMoN 15 1 steel [J]. Mater. Des., 2012, 33: 136
[10] Xu H F, Cao W Q, Yu F, et al. Current research status and development of domestic and foreign high nitrogen martensitic stainless bearing steel [J]. Iron Steel, 2017, 52(1): 53
[10] 徐海峰, 曹文全, 俞 峰等. 国内外高氮马氏体不锈轴承钢研究现状与发展 [J]. 钢铁, 2017, 52(1): 53
[11] Feng H, Jiang Z H, Li H B, et al. Influence of austenitizing temperature on microstructure and mechanical properties of high nitrogen bearing steel 30Cr15Mo1N [J]. Iron Steel, 2017, 52(9): 92
[11] 冯 浩, 姜周华, 李花兵等. 淬火温度对30Cr15Mo1N高氮轴承钢组织和性能的影响 [J]. 钢铁, 2017, 52(9): 92
[12] Chen H, Zhou T P, Chen Z J, et al. Tempering temperature effect on microstructure and mechanical properties of 30Cr15Mo1N [J]. Iron Steel, 2019, 54(5): 60
[12] 陈 豪, 周天鹏, 陈泽军等. 回火温度对30Cr15Mo1N微观组织和力学性能影响 [J]. 钢铁, 2019, 54(5): 60
[13] Corte C D, Stanford M K, Jett T R. Rolling contact fatigue of superelastic intermetallic materials (SIM) for use as resilient corrosion resistant bearings [J]. Tribol. Lett., 2015, 57: 26
[14] Corte C D, Pepper S V, Noebe R, et al. Intermetallic nickel-titanium alloys for oil-lubricated bearing applications [R]. Cleveland, OH: NASA, 2009
[15] Zhang W L, Wang H, Xu H F, et al. Spheroidizing process of ultrahigh carbon steel with 2% aluminum addition [J]. Iron Steel, 2017, 52(12): 67
[15] 张万里, 王 辉, 徐海峰等. 2%铝质量分数超高碳钢的球化退火工艺 [J]. 钢铁, 2017, 52(12): 67
[16] Wang H, Chen Q M, Zhang W L, et al. Continuous cooling transformation of an ultrahigh carbon steel [J]. Heat Treat. Met., 2017, 42(11): 24
[16] 王 辉, 陈清明, 张万里等. 一种超高碳钢的连续冷却转变 [J]. 金属热处理, 2017, 42(11): 24
[17] Wang H, Chen Q M, Zhang W L, et al. Microstructure and hardness of a new ultra-high carbon steel with high Al addition after quenching and tempering [J]. Heat Treat. Met., 2017, 42(12): 66
[17] 王 辉, 陈清明, 张万里等. 一种新型高铝超高碳钢淬回火后的组织和硬度 [J]. 金属热处理, 2017, 42(12): 66
[18] Chen X P, Li W J, Ren P, et al. Effects of C content on microstructure and properties of Fe-Mn-Al-C low-density steels [J]. Acta Metall. Sin., 2019, 55: 951
[18] 陈兴品, 李文佳, 任 平等. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响 [J]. 金属学报, 2019, 55: 951
[19] Liu L. Production technology for high quality special steel [J]. China Metall., 2011, 21(12): 11
[19] 刘 浏. 高品质特殊钢生产流程技术研究 [J]. 中国冶金, 2011, 21(12): 11
[20] Xu K D, Xiao L J, Gan Y, et al. Theory analysis on the new generation of clean steel production process [J]. Acta Metall. Sin., 2012, 48: 1
[20] 徐匡迪, 肖丽俊, 干 勇等. 新一代洁净钢生产流程的理论解析 [J]. 金属学报, 2012, 48: 1
[21] Uesugi T. Produetion of high-carbon chromium bearing steel in vertical type continuous caster [J]. Trans. Iron Steel Inst. Jpn., 1986, 26: 614
[22] Guetard G, Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue, 2016, 91: 59
[23] Chen M, Zhai J L, Cai F W. The effect of controlled rolling and controlled cooling technology on network carbide in high carbon chromium bearing steel [J]. Spec. Steel Technol., 2015, 21(3): 17
[23] 陈 敏, 翟蛟龙, 蔡丰伟. 控轧控冷对高碳铬轴承钢网状碳化物改善的研究 [J]. 特钢技术, 2015, 21(3): 17
[24] Steels for bearing production from Ovako [Z]. Ovako, www.ovako.com, 2008
[25] Fu R, Feng D, Chen X C, et al. Research of ESR-CDS technology [J]. J. Iron Steel Res., 2011, 23(S2): 1
[25] 付 锐, 冯 涤, 陈希春等. 电渣重熔连续定向凝固技术研究 [J]. 钢铁研究学报, 2011, 23(增刊2): 1
[26] Zhan L C, Chi H X, Ma D S, et al. The as-cast microstructure of ESR-CDS M2 high speed steel [J]. J. Mater. Eng., 2013, (7): 29
[26] 占礼春, 迟宏霄, 马党参等. 电渣重熔连续定向凝固M2高速钢铸态组织的研究 [J]. 材料工程, 2013, (7): 29
[27] Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
[28] Xing P D, Wang Y H, Wang Z M, et al. Homogenizing rolling technology of GCr15 bearing steel based on non-uniform temperature field [J]. Iron Steel, 2017, 52(10): 59
[28] 邢鹏达, 王玉辉, 王志蒙等. 基于非均匀温度场的GCr15轴承钢均匀化轧制 [J]. 钢铁, 2017, 52(10): 59
[29] Lai D C, Yang M S, Leng C Y, et al. Fatigue properties of low-carbon CrNiMoV bearing steel modified by carburizing and nitriding [J]. Chin. J. Vac. Sci. Technol., 2016, 36: 784
[29] 赖大春, 杨卯生, 冷崇燕等. 基于化学热处理低碳CrNiMoV轴承钢疲劳性能的研究 [J]. 真空科学与技术学报, 2016, 36: 784
[30] Smoljan B. An analysis of combined cyclic heat treatment performance [J]. J. Mater. Proc. Technol., 2004, 155-156: 1704
[31] Cao W Q, Yu F, Xu D, et al. Double refinement heat treatment process for long-service-life high-carbon chromium bearing steel [P]. Chin Pat, 201811321639. 4, 2018
[31] 曹文全, 俞 峰, 许 达等. 一种高碳铬轴承钢长寿命双细化热处理工艺 [P]. 中国专利, 201811321639.4, 2018)
[32] Yang F L, Zhou W S, Cao W Q, et al. Effect of rapid cycling phase transformation on microstructure and properties of GCr15SiMn steel [J]. J. Iron Steel Res., 2015, 27(7): 68
[32] 杨方亮, 周旺松, 曹文全等. 快速循环相变对GCr15SiMn钢组织和性能的影响 [J]. 钢铁研究学报, 2015, 27(7): 68
[33] Cao Z X, Shi Z Y, Yu F, et al. Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity [J]. Int. J. Fatigue, 2019, 128: 105176
[34] Cao W Q, Liu T Q, Xu H F, et al. A method for improving the contact fatigue life of high-carbon bearing steel [P]. Chin Pat, 201911033033.5, 2019
[34] 曹文全, 刘天琦, 徐海峰等. 一种提供碳轴承钢接触疲劳寿命的方法 [P]. 中国专利, 201911033033.5, 2019)
[35] Dodd A, Mitamura N, Kawamura H, et al. Bearings for aircraft gas turbine engines (part 2) [J]. Motion Control, 1999, (6): 1
[36] Cao Z X, Liu T Q, Yu F, et al. Carburization induced extra-long rolling contact fatigue life of high carbon bearing steel [J]. Int. J. Fatigue, 2020, 131: 105351
[37] Ooi S, Bhadeshia H K D H. Duplex hardening of steels for aeroengine bearings [J]. ISIJ Int., 2012, 52: 1927
[38] Vander G V. Inclusion ratings: Past, present, and future [A]. Bearing Steels: into the 21st Century [C]. West Conshohocken, PA: ASTM International, 1998: 13
[39] Kato Y, Sato K, Hiraoka K, et al. Recent evaluation procedures of nonmetallic inclusions in bearing steels (Statistics of extreme value method and development of higher frequency ultrasonic testing method) [A]. Bearing Steel Technology [C]. West Conshohocken, PA: ASTM International, 2002: 176
[40] Cao Z X, Shi Z Y, Yu F, et al. A new proposed Weibull distribution of inclusion size and its correlation with rolling contact fatigue life of an extra clean bearing steel [J]. Int. J. Fatigue, 2019, 126: 1
[41] Tian C, Liu J H, Fan J W, et al. Evaluation of inclusions of ultra-low oxygen bearing steel by statistics of extreme values method [J]. J. Iron Steel Res., 2018, 30: 127
[41] 田 超, 刘剑辉, 范建文等. 采用统计极值法评价超低氧轴承钢夹杂物 [J]. 钢铁研究学报, 2018, 30: 127
[42] Shi Z Y, Xu H F, Xu D, et al. Characterization of inclusions in GCr15 bearing steel by ASPEX and rotary bending fatigue methods [J]. Iron Steel, 2019, 54(4): 55
[42] 史智越, 徐海峰, 许 达等. 采用ASPEX和旋弯疲劳法表征GCr15轴承钢夹杂物 [J]. 钢铁, 2019, 54(4): 55
[43] Li Y D, Yang Z G, Li S X, et al. Correlations between very high cycle fatigue properties and inclusions of GCr15 bearing steel [J]. Acta Metall. Sin., 2008, 44: 968
[43] 李永德, 杨振国, 李守新等. GCr15轴承钢超高周疲劳性能与夹杂物相关性 [J]. 金属学报, 2008, 44: 968
[44] Fu H W, Rydel J J, Gola A M, et al. The relationship between 100Cr6 steelmaking, inclusion microstructure and rolling contact fatigue performance [J]. Int. J. Fatigue, 2019, 129: 104899
[1] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[2] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[3] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[4] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[5] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[6] 杨金侠, 孙元, 金涛, 孙晓峰, 胡壮麒. 一种细晶铸造镍基高温合金的组织与力学性能*[J]. 金属学报, 2014, 50(7): 839-844.
[7] 张艳斌, 张立民, 张继旺, 曾京. 阳极氧化处理对2014-T6铝合金弯曲疲劳性能的影响*[J]. 金属学报, 2014, 50(6): 715-721.
[8] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[9] 罗庆洪 李春志 娄艳芝 赵振业. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响[J]. 金属学报, 2012, 48(2): 194-198.
[10] 刘恩泽 郑志 佟健 宁礼奎 管秀荣. DZ468合金高周疲劳性能研究[J]. 金属学报, 2010, 46(6): 708-714.
[11] 艾素华;王中光;张匀;胡壮麒. Al-Li合金的疲劳性能[J]. 金属学报, 1993, 29(1): 33-38.
[12] 陈大明;康沫狂;谭若兵. 40CrMnSiMoVA钢准贝氏体的疲劳性能[J]. 金属学报, 1991, 27(6): 64-69.
[13] 张德堂. Al-Si涂层脆-塑性转变温度对镍基高温合金性能的影响[J]. 金属学报, 1990, 26(3): 61-65.
[14] 周鹿宾;张杰;康沫狂. 粒状贝氏体组织的疲劳性能[J]. 金属学报, 1988, 24(4): 261-265.