Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 943-949    DOI: 10.11900/0412.1961.2017.00285
  本期目录 | 过刊浏览 |
Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究
于晓明1, 谭丽丽1(), 刘宗元1, 杨柯1, 朱忠林2, 李扬德3
1 中国科学院金属研究所 沈阳 110016
2 江苏奥康尼医疗科技发展有限公司 苏州 215123
3 东莞宜安科技股份有限公司 东莞 523808
Preparation and Properties of Biological Functional Magnesium Coating on Ti6Al4V Substrate
Xiaoming YU1, Lili TAN1(), Zongyuan LIU1, Ke YANG1, Zhonglin ZHU2, Yangde LI3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Jiangsu OKANI Medical Technology Co., Ltd., Suzhou 215123, China
3 Dong Guan EONTC Co., Ltd., Dongguan 523808, China
引用本文:

于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
Xiaoming YU, Lili TAN, Zongyuan LIU, Ke YANG, Zhonglin ZHU, Yangde LI. Preparation and Properties of Biological Functional Magnesium Coating on Ti6Al4V Substrate[J]. Acta Metall Sin, 2018, 54(6): 943-949.

全文: PDF(4451 KB)   HTML
摘要: 

利用多弧离子镀技术在Ti6Al4V表面沉积纯Mg薄膜,研究了工作气压对纯Mg薄膜表面质量及性能的影响,研究了纯Mg薄膜的体外降解等性能、抗菌性及生物安全性能。结果表明:多弧离子镀方法可将纯Mg薄膜制备于钛合金表面,薄膜颗粒均匀致密,未见明显缺陷。体外浸泡实验结果表明:由于Ti6Al4V与Mg发生电偶腐蚀而使Mg薄膜迅速降解,1周时间内薄膜基本降解完毕。抗菌实验结果表明:纯Mg薄膜样品对金黄色葡萄球菌具有强烈的杀灭作用,表现出良好的抗细菌感染功能。细胞毒性实验结果表明:纯Mg薄膜可促进骨髓间充质干细胞(rBMSCs)的增殖。

关键词 钛合金纯Mg薄膜生物性能    
Abstract

Currently, metallic biomaterials used in orthopedics are normally bioinert which is hard to integrate with the bone tissue inducing aseptic loosening and easy to get infection, which is the main reason of implantation failure. Mg base metals are considered to be a new generation of revolutionary metallic biomaterials due to its similar density and mechanical properties with natural bone, good biocompatibility, degradability in the body as well as the biological functional ability to promote new bone tissue formation. In addition, the degradation of Mg may increase the local pH which can inhibit the growth of bacteria. In this work, pure Mg coating was deposited on Ti6Al4V substrate by arc ion plating. The effects of different working pressures on the surface quality and properties of Mg coating were investigated. The degradation, antibacterial and biosafety properties were studyied. The results showed that the pure Mg coating can be deposited on the surface of Ti6Al4V substrate and the coating was uniform and smooth. The immersion test in vitro showed that the degradation was very fast because of galvanic corrosion, and the whole process was finished in about one week. The results of antimicrobial experiments showed that the Mg coating can kill staphylococcus aureus and showed good antibacterial function. The results of cytotoxicity test showed that Mg coating promoted rabbit bone marrow mesenchymal stem cells (rBMSCs) growth and proliferation.

Key wordsTi alloy    pure Mg coating    bioproperty
收稿日期: 2017-07-10     
ZTFLH:  TB741  
基金资助:国家自然科学基金项目Nos.51631009、81500897和81400528,以及国家重点研发计划项目No.2016YFC1101804
作者简介:

作者简介 于晓明,男,1981年生,博士

图1  多弧离子镀系统示意图
图2  不同工作气压条件下钛合金表面纯Mg薄膜样品的XRD谱
图3  不同工作气压下钛合金表面纯Mg薄膜的SEM像
图4  不同工作气压条件下纯Mg薄膜的pH值曲线
图5  100 Pa下纯Mg薄膜样品的离子溶出结果
图6  金黄色葡萄球菌(S.aureus)在37 ℃条件下分别与钛合金纯Mg薄膜样品以及钛合金共培养后材料的杀菌能力效果图
图7  rBMSCs细胞在不同稀释浓度的浸提液中培养1、2和3 d的细胞增殖率
[1] Ge J H, Wang Y J, Zheng Y D.Advances in biodegradable and bioabsorbable bone-repaired materials[J]. New Chem. Mater., 2003, 31: 34(葛建华, 王迎军, 郑裕东. 可降解及可吸收性骨科材料研究进展[J]. 化工新型材料 2003, 31: 34)
[2] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[3] Niinomi M.Mechanical properties of biomedical titanium alloys[J]. Mater. Sci. Eng., 1998, A243: 231
[4] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[5] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Bio., 2015, 23: S28
[6] Zhao D W, Witte F, Lu F Q, et al.Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective[J]. Biomaterials, 2016, 112: 287
[7] Tan L L, Yu X M, Wan P, et al.Biodegradable materials for bone repairs: A review[J]. J. Mater. Sci. Technol., 2013, 29: 503
[8] Ren L, Lin X, Tan L L, et al.Effect of surface coating on antibacterial behavior of magnesium based metals[J]. Mater. Lett., 2011, 65: 3509
[9] Robinson D A, Griffith R W, Shechtman D, et al.In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus[J]. Acta Biomater., 2010, 6: 1869
[10] Li Y, Liu G W, Zhai Z J, et al.Antibacterial properties of magnesium in an in vitro and in vivo model of implant-associated MRSA infection[J]. Antimicrob. Agent. Chemoth., 2014, 58: 3936
[11] Wang Q, Jin S, Lin X, et al.Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB[J]. J. Mater. Sci. Technol., 2014, 30: 487
[12] Qu X H, Jin F C, Hao Y Q, et al.Nonlinear association between magnesium intake and the risk of colorectal cancer[J]. Eur. J. Gastroen Hepat., 2013, 25: 309
[13] Li M, Ren L, Li L H, et al.Cytotoxic effect on osteosarcoma MG-63 cells by degradation of magnesium[J]. J. Mater. Sci. Technol., 2014, 30: 888
[14] Chen L, Fu X K, Pan H B, et al.Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Sci. Rep., 2016, 6: 273274
[15] Chen Z T, Mao X L, Tan L L, et al.Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate[J]. Biomaterials, 2014, 35: 8553
[16] Zhai Z J, Qu X H, Li H W, et al.The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling[J]. Biomaterials, 2014, 35: 6299
[17] Cheng M Q, Wahafu T, Jiang G F, et al.A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration[J]. Sci. Rep., 2016, 6: 24134
[18] Guo Y, Ren L, Liu C, et al.Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats[J]. Mater. Sci. Eng., 2013, C33: 4470
[19] Zeng J H, Ren L, Yuan Y J, et al.Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus[J]. J. Mater. Sci. Mater. Med., 2013, 24: 2405
[20] Wan P, Wu J Y, Tan L L, et al.Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents[J]. Mater. Sci. Eng., 2013, C33: 2885
[21] Zhao Y H, Wang X Q, Xiao J Q, et al.Ti-Cu-N hard nanocomposite films prepared by pulse biased arc ion plating[J]. Appl. Surf. Sci., 2011, 258: 370
[22] Zhao Y H, Lin G Q, Xiao J Q, et al.Ti/TiN multilayer thin films deposited by pulse biased arc ion plating[J]. Appl. Surf. Sci., 2011, 257: 2683
[23] Ren L, Lin X, Tan L L, et al.Effect of surface coating on antibacterial behavior of magnesium based metals[J]. Mater. Lett., 2011, 65: 3509
[24] Witte F, Fischer J, Nellesen J, et al.In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27: 1013
[25] Salunke P, Shanov V, Witte F.High purity biodegradable magnesium coating for implant application[J]. Mater. Sci. Eng., 2011, B176: 1711
[26] Song G, Atrens A.Understanding magnesium corrosion—A framework for improved alloy performance[J]. Adv. Eng. Mater., 2003, 5: 837
[27] Fukumoto S, Sugahara K, Yamamoto A, et al.Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium[J]. Mater. Trans., 2003, 44: 518
[28] Tsubakino H, Yamamoto A, Fukumoto S, et al.High-purity magnesium coating on magnesium alloys by vapor deposition technique for improving corrosion resistance[J]. Mater. Trans., 2003, 44: 504
[29] Li X K, Gao P, Wan P, et al.Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: In vitro and in vivo study[J]. Sci. Rep., 2017, 7: 40755
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[10] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[11] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[14] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] 刘东雷, 陈情, 王德, 张睿, 王文琴. Ti-6Al-4V表面电子束熔覆(Ti, W)C1-x复合涂层的形成及摩擦性能[J]. 金属学报, 2020, 56(7): 1025-1035.