Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1357-1363    DOI: 10.11900/0412.1961.2017.00300
  研究论文 本期目录 | 过刊浏览 |
等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能
潘瑜1,2, 张殿涛2, 谭雨宁2, 李珍1,2, 郑玉峰1,3, 李莉1,2()
1 哈尔滨工程大学生物医学材料与工程研究中心 哈尔滨 150001
2 哈尔滨工程大学材料加工及智能制造研究所 哈尔滨 150001
3 北京大学前沿交叉学科研究院生物医用材料与组织工程中心 北京 100871
Mechanical Properties of Biomedical Ultrafine Grained Mg-3Sn-0.5Mn Alloy Processed by Equal-Channel Angular Pressing
Yu PAN1,2, Diantao ZHANG2, Yuning TAN2, Zhen LI1,2, Yufeng ZHENG1,3, Li LI1,2()
1 Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
2 Institute of Material Processing and Intelligent Manufacturing, Harbin Engineering University, Harbin 150001, China
3 Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary, Peking University, Beijing 100871, China
引用本文:

潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
Yu PAN, Diantao ZHANG, Yuning TAN, Zhen LI, Yufeng ZHENG, Li LI. Mechanical Properties of Biomedical Ultrafine Grained Mg-3Sn-0.5Mn Alloy Processed by Equal-Channel Angular Pressing[J]. Acta Metall Sin, 2017, 53(10): 1357-1363.

全文: PDF(3197 KB)   HTML
摘要: 

采用等通道转角挤压(equal channel angular pressing,ECAP)方法成功挤压了Mg-3Sn-0.5Mn合金,采用OM和TEM观察了ECAP过程中合金微观组织和晶粒尺寸的变化,测试了ECAP后Mg-3Sn-0.5Mn合金的力学性能与腐蚀性能,通过XRD观察了ECAP变形后的织构取向变化。结果显示,ECAP后得到了超细晶Mg-3Sn-0.5Mn合金组织,在320 ℃下经过4道次挤压后平均晶粒尺寸细化到了1.65 μm,局部晶粒细化到了0.80 μm,晶粒细化是剧烈塑性变形与再结晶共同作用的结果。4道次变形后,延伸率从22.2%上升到58.6%,抗拉强度从242.8 MPa下降到195.6 MPa,延伸率提高了约3倍,强度略有下降。ECAP后的Mg-3Sn-0.5Mn合金织构择优取向发生了显著改变,这种变化有利于滑移系的开动,提高了材料的塑性,但对强度有一定的不利影响。ECAP后的Mg-3Sn-0.5Mn合金力学性能受到改变的织构择优取向和细晶强化的共同影响。

关键词 Mg-3Sn-0.5Mn合金生物医用金属材料等通道转角挤压超细晶力学性能    
Abstract

Mg alloy has attracted researchers' attention as applied for novel biomedical material because of its super corrosion property and well biocompatibility. Ultra-fine grain (UFG) Mg alloy has certain advantages in the development of medical devices because of its good plasticity and corrosion resistance. Equal channel angular pressing (ECAP) was performed on Mg-3Sn-0.5Mn alloy successfully. The microstructure and grain size were observed and measured by OM and TEM. The mechanical property was tested by microhardness and tensile test, the texture oriented was experimented by XRD, and the corrosion property was tested by electrochemical experiment. After 4 passes ECAP at 320 ℃, the average grain size of Mg-3Sn-0.5Mn alloy reached 1.65 μm, and local grain size reached 0.8 μm. The grain refinement was caused by severe plastic deformation and recrystallization. The elongation increased from 22.2% to 58.6%, the tensile strength decreased from 242.8 MPa to 195.6 MPa after 4 passes deformation. The mechanical tests showed an improvement in the elongation after 4 passes, which were about 3 times higher than in the as-extruded sample, whereas the tensile strength decreased slightly. The texture of Mg-3Sn-0.5Mn alloy changed obviously which contributed to the actuating of the slip system. This change of texture contributed to the improvement of fracture elongation and decrease of tensile strength. The mechanical property of Mg-3Sn-0.5Mn alloy after ECAP was affected by the texture orientation and grain strengthening.

Key wordsMg-3Sn-0.5Mn alloy    biomedical metallic material    equal channel angular pressing    ultra-fine grain    mechanical property
收稿日期: 2017-07-18     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目No.51301049
作者简介:

作者简介 潘 瑜,女,1988年生,博士生

图1  Mg-3Sn-0.5Mn合金等通道转角挤压(ECAP)不同道次的宏观形貌、各面标识及拉伸试样尺寸示意图
图2  Mg-3Sn-0.5Mn合金ECAP前后的微观组织
图3  Mg-3Sn-0.5Mn合金ECAP前后晶粒尺寸分布
图4  ECAP 4道次后Mg-3Sn-0.5Mn合金的TEM像
Sample
Average
microhardness
HV
Ultimate tensile
strength / MPa
Elongation%
Extruded 45.62±2.1 242.8±3.7 22.2±1.7
1 pass 56.48±1.9 256.3±4.6 25.1±2.1
4 passes 53.99±1.0 195.6±3.1 58.6±1.9
表1  ECAP前后Mg-3Sn-0.5Mn合金的平均显微硬度及力学性能
图5  Mg-3Sn-0.5Mn合金ECAP前后拉伸曲线
图6  Mg-3Sn-0.5Mn合金ECAP前后XRD谱
图7  Mg-3Sn-0.5Mn合金ECAP前后(0002)极图
图8  ECAP前后Mg-3Sn-0.5Mn合金在模拟体液中的极化曲线
[2] Agarwal S, Curtin J, Duffy B, et al.Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications[J]. Mater. Sci. Eng., 2016, C68: 948
[3] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[4] Cheng M Q, Wahafu T, Jiang G F, et al.A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration[J]. Sci. Rep., 2016, 6: 24134
[5] Hou L D, Li Z, Pan Y, et al.In vitro and in vivo studies on biodegradable magnesium alloy[J]. Prog. Nat. Sci. Mater. Int., 2014, 24: 466
[6] Hou L D, Li Z, Zhao H, et al.Microstructure, mechanical properties, corrosion behavior and biocompatibility of as-extruded biodegradable Mg-3Sn-1Zn-0.5Mn alloy[J]. J. Mater. Sci. Technol., 2016, 32: 874
[7] Chen Y J, Xu Z G, Smith C, et al.Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomater., 2014, 10: 4561
[8] Amerstorfer F, Fischerauer S F, Fischer L, et al.Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50[J]. Acta Biomater., 2016, 42: 440
[9] Cheng P F, Han P, Zhao C L, et al.Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction[J]. Sci. Rep., 2016, 6: 26434
[10] Haude M, Ince H, Abizaid A, et al.Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial[J]. Eur. Heart J., 2016, 37: 2701
[11] Haude M, Ince H, Abizaid A, et al.Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387: 31
[12] Zhao D W, Witte F, Lu F Q, et al.Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective[J]. Biomaterials, 2017, 112: 287
[13] Ge Q, Dellasega D, Demir A G, et al.The processing of ultrafine-grained Mg tubes for biodegradable stents[J]. Acta Biomater., 2013, 9: 8604
[14] Mostaed E, Vedani M, Hashempour M, et al.Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications[J]. Biomatter, 2014, 4: e28283
[15] Mostaed E, Hashempour M, Fabrizi A, et al.Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications[J]. J. Mech. Behav. Biomed. Mater., 2014, 37: 307
[16] Orlov D, Ralston K D, Birbilis N, et al.Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing[J]. Acta Mater., 2011, 59: 6176
[17] Sunil B R, Kumar T S S, Chakkingal U, et al. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing[J]. Mater. Sci. Eng., 2016, C59: 356
[18] Su C W, Lu L, Lai M O.A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies[J]. Mater. Sci. Eng., 2006, A434: 227
[19] Balogh L, Figueiredo R B, Ungár T, et al.The contributions of grain size, dislocation density and twinning to the strength of a magnesium alloy processed by ECAP[J]. Mater. Sci. Eng., 2010, A528: 533
[20] Del Valle J A, Carre?o F, Ruano O A. Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling[J]. Acta Mater., 2006, 54: 4247
[21] Yuan W, Panigrahi S K, Su J Q, et al.Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy[J]. Scr. Mater., 2011, 65: 994
[22] Petch N J.The cleavage strength of polycrystals[J]. J. Iron Steel Inst., 1953, 174: 25
[23] Chokshi A H, Rosen A, Karch J, et al.On the validity of the hall-petch relationship in nanocrystalline materials[J]. Scr. Metall., 1989, 23: 1679
[24] Srinivasarao B, Dudamell N V, Pérez-Prado M T. Texture analysis of the effect of non-basal slip systems on the dynamic recrystallization of the Mg alloy AZ31[J]. Mater. Charact., 2013, 75: 101
[25] Wang L F, Mostaed E, Cao X Q, et al.Effects of texture and grain size on mechanical properties of AZ80 magnesium alloys at lower temperatures[J]. Mater. Des., 2016, 89: 1
[26] Xu W Q, Birbilis N, Sha G, et al.A high-specific-strength and corrosion-resistant magnesium alloy[J]. Nat. Mater., 2015, 14: 1229
[27] Zhao M C, Liu M, Song G L, et al.Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J]. Corro. Sci., 2008, 50: 1939
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.